Skip to main content
Log in

Building Extraction from LIDAR Point Cloud Data Using Marked Point Process

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm for building extraction from LIDAR (Light Detection and Ranging) point cloud data on the basis of a marked point process based building model. In this building model, the positions and geometries of buildings are modeled by a point process and its marks, respectively. The geometric marks for buildings include their length, width, direction, height. By Bayesian paradigm, a posterior distribution for the marked point process conditional on the LIDAR point cloud data is obtained. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) based scheme is designed to simulate the posterior distribution. Finally, Maximum A Posteriori (MAP) strategy is used to obtain the optimal building detection. The proposed algorithm is tested by a set of LIDAR point cloud data. The results show its efficiency in complex residential environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonarakis, A. S., Richards, K. S., & Brasington, J. (2008). Object-based land cover classification using airborne LIDAR. Remote Sensing of Environment, 112(6), 2988–2998.

    Article  Google Scholar 

  • Awrangjeb, M., & Zhang, C. (2012). Building detection in complex scenes thorough effective separation of buildings from trees. Photogrammetric Engineering & Remote Sensing, 78(7), 729–745.

    Google Scholar 

  • Baltsavias, E. P. (1999). Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 164–198.

    Article  Google Scholar 

  • Besag, J. E., Green, P., Higdon, D., & Mengersen, K. (1995). Bayesian computation and stochastic systems (with discussion). Statistical Science, 10(1), 3–66.

    Article  Google Scholar 

  • Descombes, X., & Zerubia, J. (2002). Marked point process in image analysis. IEEE Signal Processing Magazine, 19(5), 77–84.

    Article  Google Scholar 

  • Dryden, I. L., Scarr, M. R., & Taylor, C. C. (2003). Bayesian texture segmentation of weed and crop image using reversible jump Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series C (Applied Statistics), 52(1), 31–50.

    Article  Google Scholar 

  • Filin, S. (2004). Surface classification from airborne laser scanning data. Computers and Geoscience, 30(9–10), 1033–1041.

    Article  Google Scholar 

  • Gamba, P., & Houshmand, B. (2000). Digital surface models and building extraction: a comparison of IFSAR and LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 1959–1968.

    Article  Google Scholar 

  • Green, J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732.

    Article  Google Scholar 

  • Hartvig, N. V. (2002). A stochastic geometry model for function magnetic resonance images. Scandinavian Journal of Statistics, 29(3), 333–353.

    Article  Google Scholar 

  • Lafarge, F., Gimelfarb, G., & Descombes, X. (2010). Geometric feature extraction by a multi-marked point process. IEEE Transaction on Patten Analysis and Machine Intelligence, 32(9), 1597–1609.

    Article  Google Scholar 

  • Maas, H. G. (1999). Fast determination of parametric house models from dense airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 32(B3), 1–6.

    Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: John Wiley and Sons.

    Book  Google Scholar 

  • Morgan, M., & Habib, A. (2001). 3D TIN for automatic building extraction from airborne laser scanner data. In Proceedings of ASPRS Congress, Gateway to the New Millennium, St. Louis, Missouri.

  • Morgan, M., & Tempfli, K. (2000). Automatic building extraction from air-borne laser scanning data. International Archives of Photogrammetry and Remote Sensing, 33(B3), 616–623.

    Google Scholar 

  • Ortner, M., Descombes, X., & Zerubia, J. (2007). Building outline extraction from digital elevation models using marked point processes. International Journal of Computer Vision, 72(2), 107–132.

    Article  Google Scholar 

  • Ortner, M., Descombes, X., & Zerubia, J. (2008). A marked point process of rectangles and segmentation for automatic analysis of digital elevation models. IEEE Transaction on Patten Analysis and Machine Intelligence, 30(1), 105–119.

    Article  Google Scholar 

  • Overby, J., Bodum, L., Kjems, E., & Ilsϕe, P. M. (2004). Automatic 3D building reconstruction from airborne leaser scanning and cadastral data using Hough transform. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(B3), 296–301.

    Google Scholar 

  • Quartulli, M., & Datcu, M. (2004). Stochastic geometrical modeling for built-up area understanding from a single SAR intensity image with meter resolution. IEEE Transactions on Geoscience and Remote Sensing, 42, 1996–2003.

    Article  Google Scholar 

  • Rottensteiner, F. (2003). Automatic generation of high-quality building models from LIDAR data. IEEE Computer Graphics and Application, 23(6), 42–50.

    Article  Google Scholar 

  • Rue, H., & Hurn, M. A. (1999). Bayesian object identification. Biometrika, 86(3), 649–660.

    Article  Google Scholar 

  • Sampath, A., & Shan, J. (2007). Building boundary tracing and regularization from airborne LIDAR point cloud. Photogrammetric Engineering and Remote Sensing, 73(7), 805–812.

    Article  Google Scholar 

  • Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). New York: John Wiley and Sons.

    Google Scholar 

  • Vosselman, G. (2001). Building reconstruction using planar faces in very high density height data. International Arches on Photogrammetry and Remote Sensing, 34(B3), 211–218.

    Google Scholar 

  • Vu, T. T., Yamazaki, F., & Matsuoka, M. (2009). Multi-scale solution for building extraction from LIDAR and image data. International Journal of Applied Earth Observation and Geoinfomation, 11(4), 281–289.

    Article  Google Scholar 

  • Winkler, G. (1995). Image analysis, random field and Markov Chain Monte Carlo methods a mathematical introduction. Springer.

  • Zhang, K., Yan, J., & Chen, S. C. (2006). Automatic construction of building footprints from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523–2533.

    Article  Google Scholar 

  • Zhao, W., Cheng, L., & Tong, L. (2011). Robust segmentation of building points from airborne LIDAR data and imagery. 19th International Conference on Geoinformatics, 24–26, June, 2011.

  • Zhou, Q. Y., & Neumann, U. (2013). Complete residential urban area reconstruction from dense aerial LIDAR point clouds. Graphical Models, 75, 118–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhua Zhao.

About this article

Cite this article

Zhao, Q., Li, Y. & He, X. Building Extraction from LIDAR Point Cloud Data Using Marked Point Process. J Indian Soc Remote Sens 42, 529–538 (2014). https://doi.org/10.1007/s12524-013-0358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0358-0

Keywords

Navigation