Skip to main content
Log in

PSO-Based Optimal Selection of Zernike Moments for Target Discrimination in High-Resolution SAR Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Target discrimination is the key step of automatic target detection in synthetic aperture radar (SAR) images. In this paper, a new algorithm, effective and robust feature sets for target discrimination in high resolution SAR images has been proposed. Two main steps in target discrimination of SAR images have been developed, the feature extraction based on Zernike moments (ZMs) having linear transformation invariance properties and the PSO based feature selection to select the optimal feature subset of Zernike moments for decreasing computational complexity of feature extraction step. The input regions of interest (ROIs) have been segmented and passed to a number of preprocessing stages such as histogram equalization, position and size normalization. Two groups of Zernike moments (shape and margin (intensity) characteristic) have been extracted from the preprocessed images and they have been applied to the feature selection step. Each group includes 34 moments with different orders and iterations. The selected moments have been applied to a SVM classifier. The proposed scheme has been tested on the MSTAR database. The Receiver Operational Characteristics (ROC) curve and the performance of proposed method using some measured data have been analyzed. Experimental results demonstrate the efficiency of the proposed approach in target discrimination of SAR imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bhanu, B., & Lin, Y. (2003). Genetic algorithm based feature selection for target detection in SAR images. Image and Vision Computing, 21(7), 591–608.

    Article  Google Scholar 

  • Bhanu, B., Dudgeon, D. E., Zelnio, E. G., Rosenfeld, A., Casasent, D., & Reed, I. S. (1997). Guest editorial introduction to the special issue on automatic target detection and recognition. IEEE Transactions on Image Processing, 6(1), 1–6.

    Article  Google Scholar 

  • Blacknell, D. (2001). “Adaptive design and characterisation of features for SAR ATR”. Proceedings of SPIE Conference Algorithms SAR Imagery IV, 4382, 252–263.

    Google Scholar 

  • Burl, M.C., Owirka, G.J., & Novak, L.M. (1989). “Texture discrimination in synthetic aperture radar imagery”. In: Proc. IEEE 23rd Asilomar Conf. Signals, Syst., Comput., pp. 399–404.

  • Damarla, T. R., Kapoor, R., & Ressler, M. (1999). “Automatic target detection algorithm for foliage penetrating ultra-wideband SAR data using split spectral analysis”. Proceedings of SPIE Conference Algorithms SAR Imagery IV, 3704, 113–120.

    Google Scholar 

  • Dash, M., & Liu, H. (1997). “Feature selection for classification”. Intelligent Data Analysis, no. 1, pp 131–156.

  • Dudgeon, D. E., & Lacoss, R. T. (1993). An overview of automatic target recognition. Lincoln Laboratory Journal, 6(1), 3–10.

    Google Scholar 

  • Eberhart, R.C., & Shi, Y. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation. Seoul, pp 81–86

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Gao, G. (2011). An improved scheme for target discrimination in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 277–294.

    Article  Google Scholar 

  • Gao, G., Kuang, G., Zhang, Q., & Li, D. (2007). Fast detecting and locating groups of targets in high-resolution SAR images. Pattern Recognition, 40(4), 1378–1384.

    Article  Google Scholar 

  • Gao, G., Liu, L., Zhao, L., Shi, G., & Kuang, G. (2009). An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1685–1697.

    Article  Google Scholar 

  • Garcia-Nieto, J., Alba, E., Jourdan, L., & Talbi, E-G. (2007). “A comparison of PSO and GA approaches for gene selection and classification of microarray data.” Proceedings of Genetic and Evolutionary Computation Conference (GECCO), ACM, pp 427.

  • Gonzalez, R., & Woods, R. (1992). Digital image processing (2nd ed.). Boston: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Google Scholar 

  • Haddadnia, J., Ahmadi, M., & Faez, K. (2003). An efficient feature extraction method with pseudo-Zernike moment in RBF neural network-based human face recogni- tion system. Journal of Applied Signal Processing, 9, 890–901.

    Article  Google Scholar 

  • Hwang, S. K., & Kim, W. Y. (2006). A novel approach to the fast computation of Zernike moments. Pattern Recognition, 39, 2065–2076.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R.C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, pp 1942–1948.

  • Kreithen, D. E., & Novak, L. M. (1993). Discriminating targets from clutter. Lincoln Laboratory Journal, 6(1), 25–51.

    Google Scholar 

  • Li, X., Song, A., (2010). “A new edge detection method using Gaussian–Zernike moment operator”. Proceedings of the IEEE, 2nd International Asia Conference on Informatics in Control, Automation and Robotics, pp 276–279.

  • Li, S., Lee, M.-C., & Pun, C.-M. (2009a). Complex Zernike moments features for shape- based image retrieval. IEEE Transactions on Systems, Man and Cybernetics, “Part A: Systems and Humans, 39, 227–237.

    Article  Google Scholar 

  • Li, S., Lee, M-C, & Pun, C-M (2009). “Complex zernike moments features for shape-based image retrieval.” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 39(1):

  • Lin, Y., & Bhanu, B. (2005). Evolutionary feature synthesis for object recognition. IEEE Transactions on Systems, Man and Cybernetics, “Part C: Applications and Reviews, 35(2), 156–171.

    Article  Google Scholar 

  • Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502.

    Article  Google Scholar 

  • Novak, L. M., Owirka, G. J., Brower, W. S., & Weaver, A. L. (1997). The automatic target-recognition system in SAIP. Lincoln Laboratory Journal, 10(2), 187–202.

    Google Scholar 

  • Novak, L. M., Owirka, G. J., & Brower, W. S. (1998). An efficient multi-target SAR ATR algorithm. Proceedings of IEEE 32nd Asilomar Conference. Signals, and System., Computation, 1, 3–13.

    Google Scholar 

  • Osuna, E., Freund, R., & Girosi, F. (1997). Support vector machine: training and applications, technical Report. Massachusetts Institute of Technology

  • Reinartz, T. (2002). A unifying view on instance selection. Data Mining and Knowledge Discovery, 6(2), 191–210.

    Article  Google Scholar 

  • Ross, T.D., Bradley, J.J., Hudson, L.J., & O’Connor, M.P., (1999). “SAR ATR: So what’s the problem? an MSTAR perspective”. In: Proc. SPIE Conf. Algorithms SAR Imagery IV. Orlando, FL, 3721:662–672.

  • Sun, Y., Liu, Z., Todorovic, S., & Li, J. (2007). Adaptive boosting for SAR automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, 43(1), 112–125.

    Article  Google Scholar 

  • Tahmasbi, A., Saki, F., & Shokouhi, S. B. (2011). Classification of benign and malignant masses based on Zernike moments. Computers in Biology and Medicine, 41, 726–735.

    Article  Google Scholar 

  • Talbi, E-G., Jourdan, L., Garcia-Nieto, J., & Alba, E. (2008). “Comparison of population based metaheuristics for feature selection: application to microarray data classification.” Proceedings of AICCSA.

  • Unler, A., & Murat, A. (2010). A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research, 206, 528–539.

    Article  Google Scholar 

  • Verbout, S. M., Weaver, A.L., & Novak, L. M. (1998). New image features for discriminating targets from clutter. Proceedings of SPIE, 3395, 120–137 doi:10.1117/12.319439.

  • Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2007). Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4), 459–471.

    Article  Google Scholar 

  • Wang, W., Mottershead, J. E., & Mares, C. (2009). Mode-shape recognition and finite element model updating using the Zernike moment descriptor. Mechanical Systems and Signal Processing, 23, 2088–2112.

    Article  Google Scholar 

  • Zhang, L., Wang, C., Zhang, H., & Zhang, B., (2010). “Aircraft discrimination in high resolution SAR images based on texture analysis”. 2nd International Asia Conference on Informatics in Control, Automation and Robotics, pp. 1–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Amoon.

About this article

Cite this article

Amoon, M., Rezai-rad, Ga. & Daliri, M.R. PSO-Based Optimal Selection of Zernike Moments for Target Discrimination in High-Resolution SAR Imagery. J Indian Soc Remote Sens 42, 483–493 (2014). https://doi.org/10.1007/s12524-013-0344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0344-6

Keywords

Navigation