Skip to main content

Advertisement

Log in

Spatial Assessment of Soil Organic Carbon Density Through Random Forests Based Imputation

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Regional estimates of soil carbon pool have been made using various approaches that combine soil maps with sample databases. The point soil organic carbon (SOC) densities are spatialized employing approaches like regression, spatial interpolation, polygon based summation, etc. The present work investigates a data mining based spatial imputation for spatial assessment of soil organic carbon density. The study area covers Andhra Pradesh and Karnataka states of India. Field sampling was done using stratified random sampling method with land cover/use, soil type, agro-ecological regions for defining strata. The spatial data at 1 km resolution on climate, NDVI, land cover, soil type, topography was used as input for modeling the top 30 cm Soil Organic Carbon (SOC) density. To model the SOC density, a Random Forest (RF) based model with optimal parameters and input variables has been adopted. Experiment results indicate that 500 number of trees with 5 variables at each split could explain the maximum variability of soil organic carbon density of the study area. Out of various input variables used to model SOC density, land use / cover was found to be the most significant factor that influences SOC density with a distinct importance score of 34.7 followed by NDVI with a score of 12.9. The predicted mean SOC densities range between 2.22 and 13.2 Kg m−2 and the estimated pool size of SOC in top 30 cm depth is 923 Tg for Andhra Pradesh and 1,029 Tg for Karnataka. The predicted SOC densities using this model were in good agreement with the measured observations (R = 0.86).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Agboadoh, D.M.Y., (2011). Estimation and mapping of soil organic carbon stocks in croplands of the Bechem forest district, Ghana. M.Sc. thesis submitted to ITC.

  • Alvarez, R., Steinbach, H. S., & Bono, A. (2011). An artificial neural network approach for predicting soil carbon budget in agroecosystem. Soil Science Society of America Journal, 75, 965–975.

    Article  Google Scholar 

  • Banarjee, S. P., & Sharma, S. D. (1990). Soil characteristics of chandars of eastern Uttar Pradesh. Indian Forester, 116, 723–729.

    Google Scholar 

  • Bandopadhayay, A. K. (1986). Soil and water characteristics of the mangrove forest of Sunderban. Indian Forester, 112(1), 58–67.

    Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  Google Scholar 

  • Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437, 245–248.

    Article  Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science, 79(5), 655–660.

    Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C., & Telpande, B. (2008). Soil carbon storage capacity as a tool to prioritize areas for carbon sequestration. Current Science, 95, 482–494.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Chandran, P., Ray, S. K., Durge, S. L., Raja, P., Nimkar, A. M., Bhattacharyya, T., & Pal, D. K. (2009). Scope of horticultural land-use system in enhancing carbon sequestration in ferruginous soils of the semi-arid tropics. Current Science, 97(7), 1039–1046.

    Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2002). Growing stock based forest biomass in Indian forests. Biomass and Bioenergy, 22, 187–194.

    Article  Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, V. K. (2003). Soil organic carbon pool in Indian forests. Forest Ecology and Management, 173, 187–199.

    Article  Google Scholar 

  • Crookston, N. L., & Finley, A. O. (2008). YaImpute: an R package for kNN imputation. Journal of Statistical Software, 23(10), 1–16.

    Google Scholar 

  • Dadhwal, V. K., & Nayak, S. R. I. (1993). A preliminary estimate of biogeochemical cycle of Carbon for India. Science & Culture, 59, 9–13.

    Google Scholar 

  • Dadhwal, V. K., & Shah, A. (1997). Recent changes in forest phytomass carbon pool in India estimated using growing stock and remote sensing based forest inventories. Journal of Tropical Forestry, 13, 182–188.

    Google Scholar 

  • De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertaininty. Soil Use Manage, 23, 221–229.

    Article  Google Scholar 

  • Eswaran, H., van Den Berg, E., & Reich, P. (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57(1), 192–194.

    Article  Google Scholar 

  • Eswaran, H., Reich, P. F., Kimble, J. M., Beinroth, F. H., Padmanabhan, E., & Moncharoen, P. (1999). In R. Lal, J. M. Kimble, H. Eswaran, & B. A. Stewart (Eds.), Global climate change and pedogenic carbonates (pp. 15–25). Boca Raton: Lewis Publishers.

    Google Scholar 

  • GEFSOC (2006), Assessment of soil organic carbon stocks and changes at national scale. Project No.GFL-2740-02-4381. Milne,E., Easter, M., Cerri, C.E., Paustian, K. and Williams,S. (Eds.)

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change. Global Change Biology, 8, 345–360.

    Article  Google Scholar 

  • Gupta, R. K., & Rao, D. L. N. (1994). Potential of wastelands for sequestering carbon by reforestation. Current Science, 66, 378–380.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • IPCC. (2001). In J. T. Houghton (Ed.), The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (p. 881). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.

    Google Scholar 

  • Krishan, G., Srivastav, S. K., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Quantifying the underestimation of soil organic carbon by the Walkley and Black technique—examples from Himalayan and Central Indian soils. Current Science, 96(8), 1133–1136.

    Google Scholar 

  • Krishnan, P., Bourgeon, G., Lo Seen, D., Nair, K. M., Prasanna, R., Srinivas, S., Muthusankar, G., Dufy, L., & Ramesh, B. R. (2007). Organic carbon stock map for soils of southern India : a multifactorial approach. Current Science, 93(5), 706–710.

  • Lo Seen, D., Ramesh, B. R., Nair, K. M., Martin, M., Arrouays, D., & Bourgeon, G. (2010). Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India). Glob. Change Biol., 16, 1777–1792.

    Article  Google Scholar 

  • Martin, M. P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., & Arrouays, D. (2011). Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 8, 1053–1065.

  • Morvan, X., Saby, N. P. A., Arrouays, D., Le Bas, C., Jones, R. J. A., Verheijen, F. G. A., Bellamy, P. H., Stephens, M., & Kibblewhite, M. G. (2008). Soil monitoring in europe: a review of existing systems and requirements for harmonisation. Science of the Total Environment, 391, 1–12.

  • Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159.

    Article  Google Scholar 

  • Prasad, K. G., Singh, S. B., George, M., & Singh, J. (1986). Reltive effects of vegetation and rainfall on soil properties. Van Vigyan., 24(3–4), 91–95.

    Google Scholar 

  • Ramachandran, A., Jayakumar, S., Haroon, R. M., Bhaskaran, A., & Arockiasamy, D. I. (2007). Carbon sequestration: estimation of carbon stock in natural forests using geospatial technology in the eastern Ghats of Tamil Nadu, India. Current Science, 92(3), 323–331.

    Google Scholar 

  • Schlesinger, W.H. (1997). Biogeochemistry: an analysis of global change. ISBN 0-12-625155-X

  • Singh, J., Borah, I. P., & Boruah, A. (1995). Soil characteristics under three different plant communities of northeast India. Indian Forester, 121(12), 1130–1134.

    Google Scholar 

  • Thompson, J. A., Pena-Yewtukhiw, E. M., & Grove, J. H. (2006). Soil-landscape modelling across a physiographic region: topographic patterns and model transportability. Geoderma, 133, 57–70.

    Article  Google Scholar 

  • Totey, N. G., Bhowmik, A. K., & Khatri, P. K. (1986). Performance of Sal on soil derived from different materials in Shahdol forest division MP. Indian Forester, 112(1), 18–31.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263.

    Article  Google Scholar 

  • Wani, N., Velmurugan, A., & Dadhwal, V. K. (2010). Assessment of agricultural crop and soil carbon pools in Madhya Pradesh, India. Tropical Ecology, 51(1), 11–19.

    Google Scholar 

  • Xu, X., Liu, W., Zhang, C., & Kiely, G. (2011). Estimation of soil organic carbon stock and its spatial distribution in the Republic of Ireland. Soil Use and Management, 27(2), 156–162.

    Article  Google Scholar 

Download references

Acknowledgments

All the authors would like thank their respective departments / Institutes for extending necessary support for executing this project. We are thankful to ISRO Geosphere Biosphere programme for providing necessary financial and infrastructure support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenivas.

About this article

Cite this article

Sreenivas, K., Sujatha, G., Sudhir, K. et al. Spatial Assessment of Soil Organic Carbon Density Through Random Forests Based Imputation. J Indian Soc Remote Sens 42, 577–587 (2014). https://doi.org/10.1007/s12524-013-0332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0332-x

Keywords

Navigation