Acharyya, M., & Kundu, M. K. (2007). Image segmentation using wavelet packet frames and Neuro-fuzzy tools. International Journal of Computational Cognition, 5(27–43).
Google Scholar
Arivazhagan, S., & Ganesan, L. (2003). Texture classification using wavelet transform. Pattern Recognition Letters, 24, 1513–1521.
Google Scholar
Chan, J. C., Defries, R. S., Zhan, X., Haung, C., & Townshed, J. R. G. (2000). Texture features for land cover change detection at 250 m resolution- An application of machine learning feature subset selection. IEEE Geoscience and Remote sensing symposium, 7, 3060–3062.
Google Scholar
Chanussot, J., Benediktsson, J. A., & Fauvel, M. (2006). Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Geoscience and remote sensing letter, 3(1), 2006.
Google Scholar
Coggins, J. M., & Jain, A. K. (1985). A spatial filtering approach to texture analysis. Pattern Recognition Letters, 3(3), 195–203.
Article
Google Scholar
Collins, J. B., & Woodcock, C. E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 56, 66–77.
Article
Google Scholar
Fung, Tung. (1990). An assessment of TM imagery for land – cover change detection. IEEE Transactions on Geoscience and Remote Sensing, 28(4).
Johnson, R. D., & kasischke, E. S. (1998). Change vector analysis: A technique for the multispectral monitoring of landcover and condition. International Journal of Remote Sensing, 19, 411–426.
Article
Google Scholar
Kressler, F. P., & Steinnocher, K. T. (1999). Detecting land cover changes from NOAA AVHRR data by using spectral mixture analysis. International Journal of Applied Earth Observation and Geoinformation, 1, 21–26.
Article
Google Scholar
Lambin, E. F., & Strahler, A. H. (1994). Change vectoranalysis in multitemporal space: Atool to detect and categorise land cover change processes using high temporal resolution satellite data. Remote Sensing of Environment, 48, 231–244.
Article
Google Scholar
Laws, K. I. (1980). Rapid texture identification. Proc. SPIE Conf. Image Processing for Missile Guidance, pp. 376–380.
Lindsay, R. W., Percival, D. B., & Rothrock, D. A. (1996). The discrete wavelet transform and the scale analysis of the surface properties of sea ice. IEEE Transactions on Geoscience and Remote Sensing, 34, 771–787.
Article
Google Scholar
Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions Pattern Analysis and Machine Intelligence, 11, 674–693.
Article
Google Scholar
Mas, J. K. (1999). Monitoring land-cover changes: a comparision of change detection techniques. International Journal of Remote Sensing, 20(1), 139–152.
Article
Google Scholar
Melgani, F., Moser, G., & Serpico, S. B. (2002). Unsupervised change detection methods for remote sensing images. Optical Engineering, 41(3288–3297).
Google Scholar
Mrril, K. R., & Jiajun, L. (1998). A comparision of four algorithms for change detection in an urban environment. Remote Sensing of Environment, 63, 95–100.
Article
Google Scholar
Muller, S. V., Walker, D. A., Nelson, F. E., Auerbach, N. A., Bockheim, J. G., Guyer, S., & Sherba, D. (1998). Accuracy assessment of land cover map of the kupaaruk river basin, Alaska: Consideration for remote regions. Photogrammetric Engineering and Remote Sensing, 64(6), 1998.
Niedermeier, A., Romaneesen, E., & Lehner, S. (2000). Detection of coastline SAR images using wavelet methods. IEEE Transactions on Geoscience and Remote Sensing, 38, 2270–2281.
Article
Google Scholar
Richards, J. A. (1993). Remote sensing digital image analysis. New York: Springer Heidelberg.
Singh, A. (1989). Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10, 989–1003.
Article
Google Scholar