Skip to main content
Log in

Usefulness of statistics for establishing evidence-based reproductive medicine

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

During the last decade, evidence-based medicine has been described as a paradigm shift in clinical practice, and as “the conscientious, explicit, and judicious use of current best evidence in making decisions about the care of individual patients”. Appropriate statistical methods for analyzing data are critical for the correct interpretation of the results in proof of the evidence. However, in the medical literature, these statistical methods are often incorrectly interpreted or misinterpreted, leading to serious methodological errors and misinterpretations. This review highlights several important aspects related to the design and statistical analysis for evidence-based reproductive medicine. First, we clarify the distinction between ratios, proportions, and rates, and then provide a definition of pregnancy rate. Second, we focus on a special type of bias called ‘confounding bias’, which occurs when a factor is associated with both the exposure and the disease but is not part of the causal pathway. Finally, we present concerns regarding misuse of statistical software or application of inappropriate statistical methods, especially in medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance

ANOVA:

Analysis of variance

ART:

Assisted reproduction technologies

BMI:

Body mass index

EBM:

Evidence-based medicine

EDA:

Exploratory data analysis

HCG:

Human chorionic gonadotropin

NEJM:

New England Journal of Medicine

ROC:

Receiver operating characteristic curves

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2:366.

    Article  PubMed  CAS  Google Scholar 

  2. Van Noord-Zaadstra BM, Looman CW, Alsbach H, Habbema JD, te Velde ER, Karbaat J. Delaying childbearing: effect of age on fecundity and outcome of pregnancy. BMJ. 1991;302:1361–5.

    Article  PubMed  Google Scholar 

  3. Gnoth C, Godehardt D, Godehardt E, Frank-Herrmann P, Freundl G. Time to pregnancy: results of the German prospective study and impact on the management of infertility. Hum Reprod. 2003;18:1959–66.

    Article  PubMed  CAS  Google Scholar 

  4. Hamilton BE, Ventura SJ. Fertility and abortion rates in the United States, 1960–2002. Int J Androl. 2006;29:34–45.

    Article  PubMed  Google Scholar 

  5. Schoen R, Canudas-Romo V. Timing effects on first marriage: twentieth-century experience in England and Wales and the USA. Popul Stud (Camb). 2005;59:135–46.

    Article  Google Scholar 

  6. van Tetering EA, van Dessel HJHM, Mol BWJ. Evidence-based reproductive medicine in clinical practice: the case of clomiphene-resistant PCOS. Eur Clinics Obstet Gynecol. 2005;1(2):89–94.

    Article  Google Scholar 

  7. Evidence-based Medicine Working Group. Evidence-based medicine: a new approach to teaching the practice of medicine. JAMA. 1992;268:2420–5.

    Article  Google Scholar 

  8. Davidoff F, Haynes B, Sackett D, Smith R. Evidence based medicine: a new journal to help doctors identify the information they need. BMJ. 1995;310:1085–6.

    Article  PubMed  CAS  Google Scholar 

  9. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.

    Article  PubMed  CAS  Google Scholar 

  10. Coomarasamy A, Khan KS. What is the evidence that postgraduate teaching in EBM changes anything? A systematic review. BMJ. 2004;329:1017.

    Article  PubMed  Google Scholar 

  11. Keus F, Wetterslev J, Gluud C, van Laarhoven CJ. Evidence at a glance: error matrix approach for overviewing available evidence. BMC Med Res Methodol. 2010;10:90.

    Article  PubMed  Google Scholar 

  12. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration. 2008.

  13. Pocock SJ, Hughes MD, Lee RJ. Statistical problems in the reporting of clinical trials—a survey of three medical journals. N Engl J Med. 1987;317:426–32.

    Article  PubMed  CAS  Google Scholar 

  14. Porter AM. Misuse of correlation and regression in three medical journals. J Roy Soc Med. 1999;92:123–8.

    PubMed  CAS  Google Scholar 

  15. Strasak AM, Zaman Q, Pfeiffer KP, Göbel G, Ulmer H. Statistical errors in medical research—a review of common pitfalls. Swiss Med Wkly. 2007;137:44–9.

    PubMed  Google Scholar 

  16. Cox DR, Reid N. The theory of the design of experiments. London: Chapman & Hall/CRC; 2000.

    Google Scholar 

  17. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. New York: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  18. ICH E9 Expert Working Group. Statistical principles for clinical trials. Stat Med 1999;18:1905–42.

    Google Scholar 

  19. Altman DG. Statistics and ethics in medical research: misuse of statistics is unethical. BMJ. 1980;281:1267–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gardenier JS, Resnik DB. The misuse of statistics: concepts, tools, and a research agenda. Acc Res. 2002;9:65–74.

    Google Scholar 

  21. Elandt-Johnson RC. Definition of rates: some remarks on their use and misuse. Am J Epidemiol. 1975;102(4):267–71.

    PubMed  CAS  Google Scholar 

  22. Ahrens W, Pigeot I. Handbook of epidemiology. Berlin: Springer; 2005.

    Book  Google Scholar 

  23. Aschengrau A, Seage G. Essentials of epidemiology in public health. 2nd ed. Sudbury: Jones and Bartlett Publishers, Inc; 2008.

    Google Scholar 

  24. Tur-Kaspa I, Yuval Y, Bider D, Levron J, Shulman A, Dor J. Difficult or repeated sequential embryo transfers do not adversely affect in-vitro fertilization pregnancy rates or outcome. Hum Reprod. 1998;13:2452–5.

    Article  PubMed  CAS  Google Scholar 

  25. Hearns-Stokes RM, Miller BT, Scott L, Creuss D, Chakraborty PK, Segars JH. Pregnancy rates after embryo transfer depend on the provider at embryo transfer. Fertil Steril. 2000;74(1):80–6.

    Article  PubMed  CAS  Google Scholar 

  26. Yule GU. Notes on the theory of association of attributes in statistics. Biometrika. 1903;2(2):121–34.

    Article  Google Scholar 

  27. Simpson EH. The interpretation of interaction in contingency tables. J Roy Stat Soc B. 1951;13:238–41.

    Google Scholar 

  28. Appleton DR, French JM, Vanderpump MPJ. Ignoring a covariate: an example of Simpson’s paradox. Am Stat. 1996;50(44):340–1.

    Article  Google Scholar 

  29. Julious SA, Mullee MA. Confounding and Simpson’s paradox. BMJ. 1994;309(6967):1480–1.

    Article  PubMed  CAS  Google Scholar 

  30. Wagner CH. Simpson’s paradox in real life. Am Stat. 1982;36(1):46–8.

    Article  Google Scholar 

  31. Reintjes R, de Boer A, van Pelt W, Mintjes-de Groot J. Simpson’s paradox: an example from hospital epidemiology. Epidemiology. 2000;11(1):81–3.

    Article  PubMed  CAS  Google Scholar 

  32. Neutel CI. The potential for Simpson’s paradox in drug utilization studies. Ann Epidemiol. 1997;7:517–21.

    Article  PubMed  CAS  Google Scholar 

  33. Julious SA, Mullee MA. Confounding and Simpson’s paradox. BMJ. 1994;309:1480–1.

    Article  PubMed  CAS  Google Scholar 

  34. Hand DJ. Psychiatric examples of Simpson’s paradox. Br J Psychiatry. 1979;135:90–1.

    Article  PubMed  CAS  Google Scholar 

  35. Finer LB, Henshaw SK, Finer LB, Henshaw SK. Disparities in rates of unintended pregnancy in the United States, 1994 and 2001. Perspect Sex Repro H. 2006;38(2):90–6.

    Article  Google Scholar 

  36. Bateman BT, Simpson LL. Higher rate of stillbirth at the extremes of reproductive age: a large nationwide sample of deliveries in the United States. Am J Obstet Gynecol. 2006;194(3):840–5.

    Article  PubMed  Google Scholar 

  37. Altman DG, Deeks JJ. Meta-analysis, Simpson’s paradox, and the number needed to treat. BMC Med Res Methodol. 2002;2:3.

    Article  PubMed  Google Scholar 

  38. Cates CJ. Simpson’s paradox and calculation of number needed to treat from meta-analysis. BMC Med Res Methodol. 2002;2:1.

    Google Scholar 

  39. Rücker G, Schumacher M. Simpson’s paradox visualized: the example of the rosiglitazone meta-analysis. BMC Med Res Methodol. 2008;8:34.

    Article  PubMed  Google Scholar 

  40. Howell DC. Fundamental statistics for the behavioral sciences. 6th ed. Belmont: Wadsworth; 2008.

    Google Scholar 

  41. Ercan I, Yazici B, Yang Y. Misusage of statistics in medical research. Eur J Gen Med. 2007;4:128–34.

    Google Scholar 

  42. Anscombe FJ. Graphs in statistical analysis. Am Stat. 1973;27(1):17–21.

    Article  Google Scholar 

  43. Rao CR. Linear statistical inference and its applications. 2nd ed. New York: Wiley; 1973.

    Book  Google Scholar 

  44. Quinn GP, Keough MJ. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  45. Tukey JW. Exploratory data analysis. MA: Addison-Wesley; 1977.

  46. Theus M, Urbanek S. Interactive graphics for data analysis: principles and examples. Boca Raton: CRC Press; 2008.

    Google Scholar 

  47. Barnett V, Lewis T. Outliers in statistical data. 3rd ed. NY: Wiley; 1994.

    Google Scholar 

  48. Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. NY: Wiley; 1987.

    Book  Google Scholar 

  49. Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11:1–21.

    Article  Google Scholar 

  50. Iglewicz B, Hoaglin DC. How to detect and handle outliers. Milwaukee: American Society for Quality Control; 1993.

    Google Scholar 

  51. Dean RB, Dixon WJ. Simplified statistics for small numbers of observations. Anal Chem. 1951;23(4):636–8.

    Article  CAS  Google Scholar 

  52. Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.

    Google Scholar 

  53. Conover WJ. Practical nonparametric statistics. 2nd ed. NY: Wiley; 1971.

    Google Scholar 

  54. Armitage P, Berry G. Statistical methods in medical research. 3rd ed. NY: Blackwell Science; 1994.

    Google Scholar 

  55. Hollander M, Wolfe DA. Nonparametric statistical methods. 2nd ed. NY: Wiley-Interscience; 1999.

    Google Scholar 

  56. Horton NJ, Switzer SS. Statistical methods in the journal. N Engl J Med. 2005;353(18):1977–9.

    Article  PubMed  CAS  Google Scholar 

  57. Altman DG, Bland JM. Improving doctors’ understanding of statistics. J Roy Stat Soc A. 1991;154:223–67.

    Article  Google Scholar 

  58. Emerson JD, Colditz GA. Use of statistical analysis in New England Journal of Medicine. N Engl J Med. 1983;309:709–13.

    Article  PubMed  CAS  Google Scholar 

  59. Emerson JD, Colditz GA. Use of statistical analysis in the New England Journal of Medicine. In: Bailar JC, MosteUer F, editors. Medical uses of statistics. 3rd ed. Boston: NEJM Books; 1992. p. 45–57.

    Google Scholar 

  60. Schwartz SJ, Sturr M, Goldberg G. Statistical methods in rehabilitation literature: a survey of recent publications. Arch Phys Med Rehabil. 1996;77:497–500.

    Article  PubMed  CAS  Google Scholar 

  61. Wainapel SF, Kayne HL. Statistical methods in rehabilitation research. Arch Phys Med Rehabil. 1985;66:322–4.

    Article  PubMed  CAS  Google Scholar 

  62. Kurichi JE, Sonnad SS. Statistical methods in the surgical literature. J Am Coll Surg. 2006;202(3):476–84.

    Article  PubMed  Google Scholar 

  63. Avram MJ, Shanks CA, Dykes MH, et al. Statistical methods in anesthesia articles: an evaluation of two American journals during two six-month periods. Anesth Analg. 1985;64:607–11.

    Article  PubMed  CAS  Google Scholar 

  64. Hokanson JA, Luttman DJ, Weiss GB. Frequency and diversity of use of statistical techniques in oncology journals. Cancer Treat Rep. 1986;7:589–94.

    Google Scholar 

  65. Goldin J, Zhu W, Sayre JW. A review of the statistical analysis used in papers published in Clinical Radiology and British Journal of Radiology. Clin Radiol. 1996;51:47–50.

    Article  PubMed  CAS  Google Scholar 

  66. Elster AD. Use of statistical analysis in the AJR and Radiology: frequency methods and subspecialty differences. Am J Roentgenol. 1994;163:711–5.

    CAS  Google Scholar 

  67. Huang W, LaBerge JM, Lu Y, Glidden DV. Research publications in vascular and interventional radiology: research topics, study designs, and statistical methods. J Vasc Interv Radiol. 2002;13:247–55.

    Article  PubMed  Google Scholar 

  68. Hayden GF. Biostatistical trends in pediatrics: implications for the future. Pediatrics. 1983;72:84–7.

    PubMed  CAS  Google Scholar 

  69. Cardiel MH, Goldsmith CH. Type of statistical techniques in rheumatology and internal medicine journals. Rev Invest Clin. 1995;47:197–201.

    PubMed  CAS  Google Scholar 

  70. Thomas T, Fahey T, Somerset M. The content and methodology of research papers published in three United Kingdom primary care journals. Br J Gen Pract. 1998;48:1229–32.

    PubMed  CAS  Google Scholar 

  71. Rigby AS, Armstrong GK, Campbell MJ, Summerton N. A survey of statistics in three UK general practice journal. BMC Med Res Methodol. 2004;4(1):28.

    Article  PubMed  Google Scholar 

  72. Altman DG, Goodman SN. Transfer technology from statistical journals to the biomedical literature. Past trends and future predictions. JAMA. 1994;272:129–32.

    Article  PubMed  CAS  Google Scholar 

  73. Altman DG. Statistics in medical journals: some recent trends. Stat Med. 2000;19(23):3275–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Takao Miyake at Miyake Women’s Clinic, Dr. Maki Murakami at Pharmaceuticals and Medical Devices Agency, Dr. Chizuru Ito at Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, and Professor Isao Yoshimura at Tokyo University of Science for their valuable advice and suggestions.

Conflict of interest

None of the authors have a duality of interest with regard to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Sato.

About this article

Cite this article

Sato, Y., Gosho, M. & Toshimori, K. Usefulness of statistics for establishing evidence-based reproductive medicine. Reprod Med Biol 11, 49–58 (2012). https://doi.org/10.1007/s12522-011-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-011-0106-5

Keywords

Navigation