Skip to main content
Log in

A physiological role of contractions in hatched mouse blastocysts

  • Original Article
  • Published:
Reproductive Medicine and Biology

Abstract

Purpose

Using mouse blastocysts with implantation delayed for 7 days (dormant blastocysts) and time-lapse videomicrography, we examined the physiological role of contractions in hatched blastocysts.

Methods

The degree and number of contractions in dormant blastocysts were analyzed in images recorded for 48 h of culture, and compared with those in dormant blastocysts in which implantation was induced (activated blastocysts), and dormant blastocysts cultured with estrogen or progesterone.

Results

Activated blastocysts exhibited a significantly smaller number of weak contractions and a significantly larger number of strong contractions, compared with dormant blastocysts. Furthermore, the numbers of weak and strong contractions in dormant blastocysts cultured with estradiol-17β were significantly less frequent or more frequent than those in dormant blastocysts cultured with progesterone and those cultured without steroids. Expression of estrogen receptor mRNA was also detected in dormant blastocysts by the method of reverse transcription-polymerase chain reaction.

Conclusion

These results suggested that activated blastocysts enhance the contractions as a preparation for the implantation, and that the enhanced contractions in those serve as a physical stimulation for maternal recognition of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewis WH, Gregory PW. Cinematographs of living developing rabbit-eggs. Science. 1929;69:226–9.

    Article  PubMed  CAS  Google Scholar 

  2. Massip A, Mulnard J. Time-lapse cinematographic analysis of hatching of normal and frozen-thawed cow blastocysts. J Reprod Fertil. 1980;58:475–8.

    Article  PubMed  CAS  Google Scholar 

  3. Massip A, Mulnard J, Vanderzwalmen P, Hanzen C, Ectors F. The behaviour of cow blastocyst in vitro: cinematographic and morphometric analysis. J Anat. 1982;134:399–405.

    PubMed  CAS  Google Scholar 

  4. Blandau RJ. Culture of guinea pig blastocyst. In: Blandau RJ, editor. The biology of the blastocyst. Chicago: The University of Chicago Press; 1971. p. 59–70.

    Google Scholar 

  5. Bitton-Casimiri V, Brun JL, Psychoyos A. Comportement in vitro des blastocystes du 5e jour de la gestation chez la Ratte; étude microcinématographique. CR Acad Sc Paris. 1970;270:2979–82.

    CAS  Google Scholar 

  6. Bavister BD. Studies on the developmental blocks in cultured hamster embryos. In: Bavister BD, editor. The mammalian preimplantation embryo: regulation of growth and differentiation in vitro. New York: Plenum Press; 1987. p. 219–49.

    Google Scholar 

  7. Kane MT, Bavister BD. Vitamin requirements for development of eight-cell hamster embryos to hatching blastocysts in vitro. Biol Reprod. 1988;39:1137–43.

    Article  PubMed  CAS  Google Scholar 

  8. Gonzales DS, Bavister BD. Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol Reprod. 1995;52:470–80.

    Article  PubMed  CAS  Google Scholar 

  9. Kuhl W, Friendrich-Freksa H. Richtungskörperbildung und Furchung des Eies sowie das Verhalten des Trophoblasten der weißen Maus. Zool Anz Suppl. 1936;9:187–95.

    Google Scholar 

  10. Borghese E, Cassini A. Cleavage of mouse egg. In: Rose GG, editor. Cinematography in cell biology. New York: Academic Press; 1963. p. 263–77.

    Google Scholar 

  11. Cole RJ, Paul J. Properties of cultured preimplantation mouse and rabbit embryos, and cell strains derived from them. In: Wolstenholm GEW, O’Connor M, editors. Preimplantation stages of pregnancy. London: J & A. Churchill Ltd.; 1965. p. 82–112.

    Chapter  Google Scholar 

  12. Cole RJ. Cinematographic observations on the trophoblast and zona pellucida of the mouse blastocyst. J Embryol Exp Morphol. 1967;17:481–90.

    PubMed  CAS  Google Scholar 

  13. Mulnard JG. Analyse microcinématographique du développement de l′œuf de souris du stade II au blastocyste. Arch Biol Liége. 1967;78:107–38.

    PubMed  CAS  Google Scholar 

  14. Bin L, Mulnard J. Analyse cinématographique et morphométrique du comportement in vitro du blastocyste de la souris. Arch Biol Brux. 1980;91:37–48.

    CAS  Google Scholar 

  15. Checiu M, Schlechta B, Checiu I, Sandor S. In vitro studies on normal and pathological preimplamtation development. I. Events of normal mouse preimplantation development as revealed by microcinematography. Morphol-Embryol. 1990;36:101–11.

    CAS  Google Scholar 

  16. Niimura S, Takahashi E. Time-lapse videomicrographic observations of the contraction in cultured mouse blastocysts. Anim Sci Technol. 1995;66:713–9.

    Google Scholar 

  17. Niimura S, Takahashi E. The in vitro influence of indomethacin and prostaglandins on the contraction of mouse blastocysts. Jpn J Fertil Steril. 1996;41:13–7.

    CAS  Google Scholar 

  18. Niimura S, Wakasa R. Contractions of mouse blastocysts from fertilized ova or morulae. Jpn J Fertil Steril. 2000;45:13–8.

    Google Scholar 

  19. Niimura S, Takeuchi T, Matsuyama H. Time-lapse videomicrographic observations of the contraction in cultured blastocysts collected from mice of different ages. J Reprod Dev. 2000;46:1–7.

    Article  Google Scholar 

  20. Niimura S, Wakasa R. Contractions of mouse blastocysts whose hatching abilities were suppressed by soybean trypsin inhibitor. J Mamm Ova Res. 2001;18:1–7.

    Article  Google Scholar 

  21. Niimura S, Wakasa R. Hatching and contraction in mouse blastocysts treated with cytochalasin B. J Reprod Dev. 2001;47:317–23.

    Article  CAS  Google Scholar 

  22. Niimura S. Time-lapse videomicrographic analyses of contraction in mouse blastocysts. J Reprod Dev. 2003;49:413–23.

    Article  PubMed  Google Scholar 

  23. Lindner GM, Wright RW Jr. Morphological and quantitative aspects of the development of swine embryos in vitro. J Anim Sci. 1978;46:711–8.

    PubMed  CAS  Google Scholar 

  24. Kimura K. Mechanisms for establishment of pregnancy in mammalian species. J Mamm Ova Res. 2005;22:101–18.

    Article  Google Scholar 

  25. Spencer TE, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol. 2004;2:49.

    Article  PubMed  CAS  Google Scholar 

  26. Goff AK. Embryonic signals and survival. Reprod Domest Anim. 2002;37:133–9.

    Article  PubMed  Google Scholar 

  27. Geisert RD, Malayer JR. Implantation. In: Hafez B, Hafez ESE, editors. Reproduction in farm animals. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Lippincott Williams and Wilkins; 2000. p. 126–39.

    Google Scholar 

  28. Bazer FW, Spencer TE, Ott TL. Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol. 1997;37:412–20.

    PubMed  CAS  Google Scholar 

  29. Roberts RM, Leaman DW, Cross JC. Role of interferons in maternal recognition of pregnancy in ruminants. Proc Soc Exp Biol Med. 1992;200:7–18.

    PubMed  CAS  Google Scholar 

  30. Stewart HJ. Trophoblastic factors and the maternal recognition of pregnancy in sheep and cattle. J Dev Physiol. 1990;14:115–23.

    PubMed  CAS  Google Scholar 

  31. Roberts RM. Conceptus interferons and maternal recognition of pregnancy. Biol Reprod. 1989;40:449–52.

    Article  PubMed  CAS  Google Scholar 

  32. Bazer FW, Vallet JL, Harney JP, Thatcher WW. Comparative aspects of maternal recognition of pregnancy between sheep and pigs. J Reprod Fertil Suppl. 1989;37:85–9.

    PubMed  CAS  Google Scholar 

  33. Flint APF, Burton RD, Gadsby JE, Saunders PTK, Heap RB. Blastocyst oestrogen synthesis and the maternal recognition of pregnancy. In: Ciba Foundation symposium on maternal recognition of pregnancy. Amsterdam: Excerpta Medica. 1979: 209–38.

  34. Kennedy TG. Embryonic signals and the initiation of blastocyst implantation. Aust J Biol Sci. 1983;36:531–43.

    PubMed  CAS  Google Scholar 

  35. Beier M, Mootz U. Significance of maternal uterine proteins in the establishment of pregnancy. In: Ciba Foundation symposium on maternal recognition of pregnancy. Amsterdam: Excerpta Medica. 1979: 111–40.

  36. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl. 1971;14:7–21.

    PubMed  CAS  Google Scholar 

  37. Hou Q, Gorski J. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development. Proc Natl Acad Sci. 1993;90:9460–4.

    Article  PubMed  CAS  Google Scholar 

  38. Hou Q, Paria BC, Mui C, Dey SK, Gorski J. Immunolocalization of estrogen receptor protein in the mouse blastocyst during normal and delayed implantation. Proc Natl Acad Sci. 1996;93:2376–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sueo Niimura.

About this article

Cite this article

Niimura, S., Sato, J. A physiological role of contractions in hatched mouse blastocysts. Reprod Med Biol 8, 53–58 (2009). https://doi.org/10.1007/s12522-009-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-009-0008-y

Keywords

Navigation