Skip to main content
Log in

Assessment of fertility by sperm mechanical energy using computer-assisted sperm analysis system

  • Original Article
  • Published:
Reproductive Medicine and Biology

Abstract

Purpose

It is known that the energy distribution of sperm obeys the following equations and the total mechanical energy in a sperm population is expressed as nKλ × a constant. nKλ/102 is defined as the sperm energy index (SEI).

$$ P = \frac{C}{\sqrt t }\left( {\frac{e\lambda }{t}} \right)^{Kt} \quad \frac{1}{C} = \int\limits_{0}^{\infty } {\frac{1}{\sqrt t }} \left( {\frac{e\lambda }{t}} \right)^{Kt} {\text{d}}t. $$

Here, P is the existing probability density of sperm, t is the square of amplitude of lateral head displacement, λ is the mean of t, n is the number of motile sperm in semen in a measurement field, and K is a constant determined for each semen sample. These values can be obtained with the use of computer-assisted sperm analysis (CASA).

Methods

Sperm motility parameters were measured using CASA in 163 ejaculated semen samples from 47 infertile men (infertility group), and 162 ejaculated semen samples from 45 fertile men (natural pregnancy group). is defined for the present investigation as the mean energy index (MEI). SEI and MEI were obtained according to the methods described in sperm energy theory.

Results

There were no natural pregnancy subjects with SEI < 0.5. All subjects with MEI > 2.0 and SEI > 1.0 were in the natural pregnancy group.

Conclusions

An assessment of fertility was possible by using the sperm energy index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vantman D, Bands SM, Koukoulis G, Dennison L, Sherins RJ. Assessment of sperm motion characteristics from fertile and infertile men using a fully automated computer-assisted semen analyzer. Fertil Steril. 1989;51:156–61.

    PubMed  CAS  Google Scholar 

  2. Isobe T. Mathematical analysis of sperm energy distribution. Japanese J Fertil Implant. 2008;25:12–8.

    Google Scholar 

  3. Makler A. The improved ten-micrometer chamber for rapid sperm count and motility evaluation. Fertil Steril. 1980;33:337–8.

    PubMed  CAS  Google Scholar 

  4. Isobe T. Mathematical analysis of sperm motility. Japanese J Fertil Implant. 2007;24(1):6–15.

    Google Scholar 

  5. Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44:394–436.

    Article  PubMed  CAS  Google Scholar 

  6. Fawcett DW, Greep RO, Koblinsky MA. The structure of the spermatozoon. Frontiers in reproduction and fertility control. MIT Press 1977. p. 353–78.

  7. Sathananthan AH. Visual atlas of human sperm structure and function for assisted reproductive technology. Singapore: National University; 1996. p. 279.

    Google Scholar 

  8. Gibbons IR, Rowe AJ. Dynein: a protein with adenosine triphosphatase activity from cilia. Science. 1965;149:424–6.

    Article  PubMed  CAS  Google Scholar 

  9. Summers KE, Gibbons IR. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm. Proc Natl Acad Sci USA. 1971;68:3092–6.

    Article  PubMed  CAS  Google Scholar 

  10. Shingyoji C, Murakami A, Takahashi K. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature. 1977;265:269–70.

    Article  PubMed  CAS  Google Scholar 

  11. Kamiya R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol. 2002;219:115–55.

    Article  PubMed  CAS  Google Scholar 

  12. Vale RD, Toyoshima YY. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell. 1988;52:459–69.

    Article  PubMed  CAS  Google Scholar 

  13. Shingyoji C, Higuchi H, Yoshimura M, Katayama E, Yanagida T. Dynein arms are oscillating force generators. Nature. 1998;393:711–4.

    Article  PubMed  CAS  Google Scholar 

  14. Mohri H. Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature. 1968;217:1053–4.

    Article  PubMed  CAS  Google Scholar 

  15. Austin CR. Observations on the penetration of the sperm into the mammalian egg. Aust J Sci Res Ser B. 1951;4:581–96.

    CAS  Google Scholar 

  16. Chang MC. Fertilizing capacity of spermatozoa deposited into fallopian tubes. Nature. 1951;168:697–8.

    Article  PubMed  CAS  Google Scholar 

  17. Dan JC. Studies on the acrosome. I. Reaction to egg water and other stimuli. Biol Bull. 1952;103:54–66.

    Article  Google Scholar 

  18. Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil. 1970;23:193–6.

    Article  PubMed  CAS  Google Scholar 

  19. Burkman LJ. Characterization of hyperactivated motility by human spermatozoa during capacitation: comparison of fertile and oligozoospermic sperm populations. Arch Androl. 1984;13:153–65.

    Article  PubMed  CAS  Google Scholar 

  20. Ishijima S, Baba SA, Mohri H, Suarez SS. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Mol Reprod Dev. 2002;61:376–84.

    Article  PubMed  CAS  Google Scholar 

  21. Hoshi K, Yanagida K, Aita T, Yoshimatsu N, Sato A. Changes in the motility pattern of human spermatozoa during in vitro incubation. Tohoku J Exp Med. 1988;154:47–56.

    Article  PubMed  CAS  Google Scholar 

  22. Cancel AM, Lobdell D, Mendola P, Perreault SD. Objective evaluation of hyperactivated motility in rat spermatozoa using computer-assisted sperm analysis. Hum Reprod. 2000;15:1322–8.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt H, Kamp G. Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis. Reproduction. 2004;128:171–9.

    Article  PubMed  CAS  Google Scholar 

  24. Isobe T, Matsuura D. Examination of sperm curvature using CASA. Japanese J Fertil Implant. 2008;25:6–11.

    Google Scholar 

  25. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD. Chemotaxis of Arbacia punctulata spermatozoa to resact, peptide from the egg jelly layer. J Cell Biol. 1985;101:2324–9.

    Article  PubMed  CAS  Google Scholar 

  26. Hoshi M, Kawamura M, Maruyama Y, Yoshida E, Nishigaki T, Ikeda M, et al. How does the jelly coat of starfish eggs trigger the acrosome reaction in homologous spermatozoa? In: Gagnon C, editor. The male gamete: from basic science to clinical applications. Vienna: Cache River Press; 1999. p. 119–25.

    Google Scholar 

  27. SeGall GK, Lennarz WJ. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev Biol. 1979;71:33–48.

    Article  PubMed  CAS  Google Scholar 

  28. Meizel S, Pillai MC, Diaz-Perez E, Thomas P. Initiation of the human sperm acrosome reaction by components of human follicular fluid and cumulus secretions including steroids. In: Bavister BD, Cummins J, Roldan ERS, editors. Fertilization in Mammals. Norwell: Serono Symposia; 1990. p. 205–22.

    Google Scholar 

  29. Suzuki N. Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zool Sci. 1995;12:13–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere appreciation to embryologist Daizo Matsuura for his work in collecting data, and to Mototsugu Hiraoka, President of Suzuka Kaisei Hospital, for his efforts in providing experimental facilities for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Isobe.

About this article

Cite this article

Isobe, T. Assessment of fertility by sperm mechanical energy using computer-assisted sperm analysis system. Reprod Med Biol 8, 25–31 (2009). https://doi.org/10.1007/s12522-008-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-008-0004-7

Keywords

Navigation