Skip to main content
Log in

Provenance analysis of the granitic ashlars used in the construction of the Roman theatre in Emerita Augusta (Merida, Spain)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The aim of this work is to determine the provenance of the granitic rocks used in the Roman theatre in Emerita Augusta. In order to obtain a reliable provenance of these granitic materials, the sampling in the theatre was carried out to encompass the original granitic rocks present in it. Some ancient quarries, previously documented, were selected taking into account factors like proximity, mining marks, or ancient transport routes. Stone materials and rocks from quarries were analysed and compared. The mineralogical, textural, and geochemical properties of the rocks were obtained. Moreover, ultrasonic pulse velocity (UPV) and hardness rebound tester (HRT) in situ measurements were carried out on the surface of the building’s granite ashlars, yielding representative results for the whole structure, as well as in granitic rocks from documented quarry fronts nearby the city. This multi-technique approach could be considered appropriate and advisable for built heritage materials. The obtained results, specially petrographic characteristics and geochemical signature of the different samples from both monument and quarries, allowed identifying the possible provenance of the granites used in the construction of the Roman theatre showing the stone supply system near the ancient city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez de Buergo M, González T (1994) Estudio del método de la medida de la velocidad de propagación del sonido y su aplicación a edificios históricos. Ing. Civ. 94:69–74

    Google Scholar 

  • Álvarez de Buergo M, Fort R, Perez-Montserrat EM (2012) Evolution of the alteration process in time of granitic materials from Valdemorillo quarries used in built heritage, Madrid, Spain. EGU General Assembly, Vienna, Austria

  • Apalategui O, Jorquera A, Vallalobos M, Dabrio C, Gaspar A, Armenteros I (1988) Hoja núm. 803 (Almendralejo), 1:50.000 segunda serie. IGME

  • Apalategui O, Eguíluz L, Quesada C (1990) Ossa-Morena zone: structure. Pre-Mesozoic geology of Iberia. Springer-Verlag 280-92

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14

    Google Scholar 

  • Bandrés A, Eguiluz L, Gil Ibarguchi JL, Palacios T (2002) Geodynamic evolution of a Cadomian arc region: the northern Ossa-Morena zone, Iberian massif. Tectonophysics 352:105–120

    Google Scholar 

  • Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626

    Google Scholar 

  • Basu A, Aydin A (2004) A method for normalization of Schmidt hammer rebound values. Int J Rock Mech Min Sci 41:1211–1214

    Google Scholar 

  • Beardsley FR, Goles GG (2001) Sampling for provenance: tailings from prehistoric stone quarries in the South Pacific. J Archaeol Sci 28:587–595

    Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Google Scholar 

  • Brilli M, Conti L, Giustini F, Occhiuzzi M, Pensabene P, De Nuccio M (2001) Determining the provenance of black limestone artifacts using petrography, isotopes and EPR techniques: the case of the monument of Bocco. J Archaeol Sci 38:1377–1384

    Google Scholar 

  • Buyuksagis IS, Goktan RM (2007) The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int J Rock Mech Min Sci 44:299–207

    Google Scholar 

  • Cerna B, Engel Z (2011) Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surf Process Landf 36:170–179

    Google Scholar 

  • Fais S, Casula G, Cuccuru F, Ligas P, Bianchi MG (2018) An innovative methodology for the non-destructive diagnosis of architectural elements of ancient historical buildings. Sci Rep 8:259–266

    Google Scholar 

  • Fort R, Álvarez de Buergo M, Perez-Montserrat EM, Varas MJ (2010) Characterisation of monzogranitic batholiths as a supply source for heritage construction in the northwest of Madrid. Eng Geol 115:149–157

    Google Scholar 

  • Fort R, Álvarez de Buergo M, Perez-Montserrat EM (2013) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int J Rock Mech Min Sci 61:296–205

    Google Scholar 

  • Galán E, Carretero MI, Mayoral E (1999) A methodology for locations of the original quarries used for constructing historical buildings: applications to Malaga Cathedral, Spain. Eng Geol 54:287–298

    Google Scholar 

  • García-Lobón JL, Rey-Moral C, Ayala C, Martín-Parra LM, Matas J, Reguera MI (2014) Regional structure of the southern segment of Central Iberian Zone (Spanish Variscan Belt) interpreted from potential field images and 2.5 D modelling of Alcudia gravity transect. Tectonophysics 614:185–102

    Google Scholar 

  • GEODE (2020) Continuous digital geological map of Spain, scale 1:50.000. Available online: http://info.igme.es/visorweb/. Accessed on 12 May 2020

  • Gonzalo JC (1987) Petrología y estructura del basamento en el área de Merida (Extremadura Central). Ph.D. thesis, Universidad de Salamanca

  • Gonzalo JC (1989) Litoestratigrafía y tectónica del basamento en el área de Merida (Extremadura Central). Bol Geol Min 100:49–72

    Google Scholar 

  • Julivert M, Fontboté JM, Ribeiro A, Nabais-Conde LE (1972) Mapa tectónico de la Península Ibérica y Baleares a escala 1:1.000.000. IGME

  • Karen Herrera L, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeterior Biodegrad 63:813–822

    Google Scholar 

  • Katz O, Reches Z, Roegiers JC (2000) Evaluation of mechanical rock properties using a Schmidt hammer. Int J Rock Mech Min Sci 37:723–731

    Google Scholar 

  • Lapuente MP, Nogales-Basarrate T, Royo H, Brilli M (2014) White marble sculptures from the National Museum of Roman Art (Merida, Spain): sources of local and imported marbles. Eur J Mineral 26:333–354

    Google Scholar 

  • Lee MS, Yoo JH, Kim J (2018) Source rock investigation for the Gyeongju Seated Stone Buddha with square pedestals in the Blue House using nondestructive petrological analysis. J Geol Soc Korea 54(5):567–578

    Google Scholar 

  • Link RF, Koch GS (1962) Quantitative areal modal analysis of granitic complexes. Geol Soc Am Bull 73:411–414

    Google Scholar 

  • Liritzis I, Sideris C, Vafiadou A, Mitsis J (2008) Mineralogical, petrological and radioactivity aspects of some building material from Egyptian Old Kingdom monuments. J Cult Herit 9:1–13

    Google Scholar 

  • Malacrino CG (2010) Constructing the ancient world. Getty Publications, Architectural techniques of the Greeks and Romans

    Google Scholar 

  • Malfilatre C, Hallot E, Boulvais P, Poujol M, Chauvin A, Gapais D, Dabard MP, Bourquin S, Pallix D (2014) Fingerprinting the provenance of building stones: a case study on the Louvigné and Lanhélin granitic rocks (Armorican massif, France). Bull Soc Geol Fr 185:13–31

    Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Mota-López MI, Fort R, Álvarez de Buergo M, Pizzo A, Maderuelo-Sanz R, Meneses Rodríguez JM (2018) Characterization of concrete from Roman buildings for public spectacles in Emerita Augusta (Mérida, Spain). Archaeol Anthropol Sci 10:1007–1022

    Google Scholar 

  • Norat RDCC, da Costa ML (2019) Characterization, usage and provenance of building rocks in the Fortress of São José of Macapá (Amazon, Brazil). Eng Geol 253:214–228

    Google Scholar 

  • Ozkan I, Bilim N (2008) A new approach for applying the in-situ Schmidt hammer test on a coal face. Int J Rock Mech Min Sci 45:888–898

    Google Scholar 

  • Pereira MF, Silva JB (2001) The Portalegre-Esperança shear zone: sinistral transcurrent transpression along the Ossa-Morena/Central-Iberian zones boundary (Northeast Alentejo, Portugal). Comun IGM Lisboa 88:19–32

    Google Scholar 

  • Pizzo A (2007) Las técnicas constructivas de la arquitectura pública de Augusta Emerita. Ph.D. thesis, Universidad Autónoma Madrid

  • Pizzo A (2008) El aprovisionamiento de los materiales constructivos en la arquitectura de Augusta Emerita. Las canteras de granito. In: Arqueología de la Construcción II, Los procesos constructivos en el mundo romano: Italia y provincias orientales. Anejos de AEspA LVII, 571-588

  • Pizzo A (2011) Las canteras de granito de Augusta Emerita: localización y sistemas de explotación. In: Proceedings of the International Congress 1910-2010: El Yacimiento Emeritense 1-25

  • Pizzo, A., and Cordero, T. (2014) El paisaje de las canteras emeritenses: poblamiento y áreas de producción. In: Arqueología de la Construcción IV. Las canteras en el mundo antiguo: sistemas de explotación y procesos productivos. Anejos de AEsPA, ed. Bonetto, camporeale and Pizzo, vol. 69, 329-340

  • Roubault M (1963) Determination des mineraux des roches au microscope polarisant. Ed. Lamarre-Poinat, Paris, France

  • Shakesby RA, Matthews JA, Owen JA (2006) The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quat Sci Rev 25:2846–2867

    Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Taelman D (2014) Contribution to the use of marble in Central-Lusitania in Roman times: the stone architectural decoration of Ammaia (Sao Salvador da Aramenha, Portugal). Arch Esp Arqueol 87:175–194

    Google Scholar 

  • Taelman D, Elburg M, Smet I, De Paepe P, Lopes L, Vanhaecke F, Vermeulen F (2013a) Roman marble from Lusitania: petrographic and geochemical characterisation. J Archaeol Sci 40:2227–2236

    Google Scholar 

  • Taelman D, Elburg M, Smet I, De Paepe P, Vanhaecke F, Vermeulen F (2013b) White, veined marble from roman Ammaia (Portugal): provenance and use. Archaeometry 55:370–390

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The ContinentalCrust: its Composition and Evolution.Blackwell, Oxford, London

  • Torok A, Prikryl R (2010) Current methods and future trends in testing, durability analyses and provenance studies of natural stones used in historical monuments. Eng Geol 115(3-4):139–142

    Google Scholar 

  • Tucci PL (2014) The Oxford handbook of Greek and Roman art and architecture. The materials and techniques of Greek and Roman Architecture. Oxford University Press, New York

    Google Scholar 

  • Tuğrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317

    Google Scholar 

  • Verhoeven G, Taelman D, Vermeulen F (2012) Computer vision-based orthophoto mapping of complex archaeological sites: the ancient quarry of Pitaranha (Portugal-Spain). Archaeometry 54:1114–1129

    Google Scholar 

  • Viles H, Goudie A, Grab A, Lalley J (2011) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Process Landf 36:320–333

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Google Scholar 

  • Williams-Thorpe O, Potts PJ (2002) Geochemical and magnetic provenancing of roman granite columns from Andalucía and Extremadura, Spain. Oxf J Archaeol 21:167–194

    Google Scholar 

  • Wu F, Dy S, Li H, Bm J, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173

    Google Scholar 

  • Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66:211–220

    Google Scholar 

  • Younes A, Gaied ME, Gallala W (2012) Identification of stone blocks used for the building of the Thysdrus and Thapsus amphitheatres in Tunisia. Archaeometry 54:213–229

    Google Scholar 

Download references

Acknowledgements

Special thanks to PhD. Cecilia Pérez-Soba for her valuable comments about the geochemical analyses which helped us to understand the correlations between the data obtained in the selected quarries and the monument. We extend our thanks to the Monumental Consortium of Merida for giving us the legal authorisation for sampling the monument.

Funding

This work was supported by the Top Heritage (P2018/NMT-4372) programme from the Regional Government of Madrid (Spain). The authors wish to acknowledge professional support of the Interdisciplinary Thematic Platform from CSIC Open Heritage: Research and Society (PTI-PAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isabel Mota-López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota-López, M.I., Fort, R., Álvarez de Buergo, M. et al. Provenance analysis of the granitic ashlars used in the construction of the Roman theatre in Emerita Augusta (Merida, Spain). Archaeol Anthropol Sci 12, 236 (2020). https://doi.org/10.1007/s12520-020-01192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01192-1

Keywords

Navigation