Skip to main content

Hand grasping and finger flexion during Lower Paleolithic stone tool ergonomic exploration

Abstract

Lower Paleolithic stone tool features and shape have been studied in detail; traceology and experimental archaeology have provided us with a lot of information about possible tool use and functionality. The way modern humans use these tools has been used as a proxy for the study of early stone tool-makers’ behavior, taking into account that our ancestors could have had similar manipulative capabilities to us. Less importance has been given to stone tool ergonomics, even if comfortable and ergonomic grasping prevent hand damage and improve tool use. Here, we measured the phalanx flexion of 82 subjects during comfortable stone tool handling for both Oldowan pebble tools and Acheulean handaxes. We expected differences in the pattern of phalanx flexion in the two tool types and in relation with tool dimensions. In fact, Oldowan pebble tools and handaxes show differences in finger flexion and in the single finger contribution to comfortable grasping.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753

    Google Scholar 

  2. Amis AA (1987) Variation of finger forces in maximal isometric grasp tests on a range of cylinder diameters. J Biomed Eng 9:313–320

    Google Scholar 

  3. Arditi A, Holtzman JD, Kosslyn SM (1988) Mental imagery and sensory experience in congenital blindness. Neuropsychologia 26:1–12

    Google Scholar 

  4. Biro D, Haslam M, Rutz C (2013) Introduction: tool use as adaptation. Philos Trans R Soc Lond B:1–8

  5. Braun DR, Aldeias V, Archer W (2019) Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc Natl Acad Sci 116:11712–11717

    Google Scholar 

  6. Bruner E, Iriki A (2016) Extending mind visuospatial integration and the evolution of the parietal lobes in the human genus. Quat Int 405:98–110

    Google Scholar 

  7. Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MA, Martín-Guerra E (2018a) Visuospatial integration and hand-tool interaction in cognitive archaeology. Curr Top Behav Neurosci 41:13–36

    Google Scholar 

  8. Bruner E, Spinapolice E, Burke A, Overmann K (2018b) Visuospatial integration: paleoanthropological and archaeological perspectives. In: Di Paolo LD, Di Vincenzo F, D’Almeida AF (eds) Evolution of primate social cognition. Springer, Cham, pp 299–326

    Google Scholar 

  9. Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MA, Martín-Guerra E (2019) Visuospatial integration and hand-tool interaction in cognitive archaeology tasks. In: Hodgson T (ed) Processes of visuospatial attention and working memory, Curr top Behav Neurosci, vol 41. Springer, Cham, pp 13–36

    Google Scholar 

  10. Chen Y (1991) An evaluation of hand pressure distribution and forearm flexor muscle contribution for a power grasp on cylindrical handles, Ph.D. University of Nebraska, Dissertation

    Google Scholar 

  11. Clark A (2007) Re-inventing ourselves: the plasticity of embodiment, sensing, and mind. J Med Philos 32(3):263–282

    Google Scholar 

  12. Clark A (2008) Supersizing the mind: embodiment, action, and cognitive extension. Oxford University Press, New York

    Google Scholar 

  13. Claud E (2015) The use of biface manufacturing flakes: functional analysis of three Middle Palaeolithic assemblages from southwestern and northern France. Quat Int 361:131–141

    Google Scholar 

  14. Cobos S, Ferre M, Ángel Sánchez-Urán M, Ortego J, Aracil R (2010) Human hand descriptions and gesture recognition for object manipulation. Comput method biomec 13(3):305–317

    Google Scholar 

  15. Cochran DJ, Riley MW (1986) The effects of handle shape and size on exerted forces. Hum Factors 28(3):253–265

    Google Scholar 

  16. Domalain M, Bertin A, Daver G (2017) Was Australopithecus afarensis able to make the Lomekwian stone tools? Towards a realistic biomechanical simulation of hand force capability in fossil hominins and new insights on the role of the fifth digit. Comptes Rendus Palevol 16(5):572–584

    Google Scholar 

  17. Ejeskär A, Örtengren R (1981) Isolated finger flexion force a methodological study. Hand 3:223–230

    Google Scholar 

  18. Fedato A, Silva-Gago M, Terradillos-Bernal M, Alonso-Alcalde R, Martín-Guerra E, Bruner E (2019a) Electrodermal activity during Lower Paleolithic stone tool handling. Am J Hum Biol 31(5):e23279

    Google Scholar 

  19. Fedato A, Silva-Gago M, Terradillos-Bernal M, Alonso-Alcalde R, Martín-Guerra E, Bruner E (2019b) Hand morphometrics, electrodermal activity, and stone tools haptic perception. Am J Hum Biol:e23370

  20. Feix T, Kivell TL, Pouydebat E, Dollar AM (2015) Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates. J R Soc Interface 12(106):20150176

    Google Scholar 

  21. Gowlett J (2006) The elements of design form in Acheulian bifaces: modes, modalities, rules and language. In: Goren-Inbar N, Sharon G (eds) Axe age: Acheulian toolmaking from quarry to discard. Equinox, London, pp 203–222

    Google Scholar 

  22. Hall C (1997) External pressure at the hand during object handling and work with tools. Int J Ind Ergon 20(3):191–206

    Google Scholar 

  23. Hamill J, Knutzen KM (2006) Biomechanical basis of human movement. Williams & Wilkins, Baltimore

    Google Scholar 

  24. Harmand S, Lewis JE, Feibel CS, Lepre CJ, Prat S, Lenoble A, Boës X, Quinn RL, Brenet M, Arroyo A, Taylor N, Clément S, Daver G, Brugal JP, Leakey L, Mortlock RA, Wright JD, Lokorodi S, Kirwa C, Kent DV, Roche H (2015) 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521:310–315

    Google Scholar 

  25. Hazelton FT, Smidt GL, Flatt AE, Stephens RI (1975) The influence of wrist position on the force produced by the finger flexors. J Biomech 8(5):301–306

    Google Scholar 

  26. Heed T, Buchholz VN, Engel AK, Röder B (2015) Tactile remapping: from coordinate transformation to integration in sensorimotor processing. Trends Cogn Sci 19:251–258

    Google Scholar 

  27. Hirose N (2002) An ecological approach to embodiment and cognition. Cogn Syst Res 3(3):289–299

    Google Scholar 

  28. Hu D, Xiong CH, Liu MJ (2018) Exploring the existence of better hands for manipulation than the human hand based on hand proportions. J Theo Biol 440:100–111

    Google Scholar 

  29. Iriki A (2006) The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol 16:660–667

    Google Scholar 

  30. Jaffar N, Abdul-Tharim AH, Mohd-Kamar IF, Lop NS (2011) A literature review of ergonomics risk factors in construction industry. Procedia Engineer 20:89–97

    Google Scholar 

  31. Kaplan DM (2012) How to demarcate the boundaries of cognition. Biol Philos 27(4):545–570

    Google Scholar 

  32. Key AJ, Dunmore CJ (2015) The evolution of the hominin thumb and the influence exerted by the non-dominant hand during stone tool production. J Hum Evol 78:60–69

    Google Scholar 

  33. Key AJ, Dunmore CJ (2018) Manual restrictions on Palaeolithic technological behaviours. PeerJ 6:e5399

    Google Scholar 

  34. Key AJ, Lycett SJ (2011) Technology based evolution? A biometric test of the effects of handsize versus tool form on efficiency in an experimental cutting task. J Archaeol Sci 38(7):1663–1670

    Google Scholar 

  35. Key AJ, Lycett SJ (2018) Investigating interrelationships between Lower Palaeolithic stone tool effectiveness and tool user biometric variation: implications for technological and evolutionary changes. Archaeol Anthropol Sci 10(5):989–1006

    Google Scholar 

  36. Key AJ, Proffitt T, Stefani E, Lycett SJ (2016) Looking at handaxes from another angle: assessing the ergonomic and functional importance of edge form in Acheulean bifaces. J Anthropol Archaeol 44:43–55

    Google Scholar 

  37. Key A, Dunmore CJ, Hatala KG, Williams-Hatala EM (2017) Flake morphology as a record of manual pressure during stone tool production. J Archaeol Sci 12:43–53

    Google Scholar 

  38. Key A, Merritt SR, Kivell TL (2018) Hand grip diversity and frequency during the use of lower Palaeolithic stone cutting-tools. J Hum Evol 125:137–158

    Google Scholar 

  39. Key AJ, Dunmore CJ, Marzke MW (2019) The unexpected importance of the fifth digit during stone tool production. Sci Pep 9(1):1–8

    Google Scholar 

  40. Kinoshita H, Murase T, Bandou T (1996) Grip posture and forces during holding cylindrical objects with circular grips. Ergonomics 39:1163–1176

    Google Scholar 

  41. Kivell TL (2015) Evidence in hand: recent discoveries and the early evolution of human manual manipulation. Philos Trans R Soc Lond B 370:1–11

    Google Scholar 

  42. Leakey MD (1971) Olduvai Gorge: Volume 3, excavations in beds I and II, vol 3. University Press, Cambridge, Cambridge, pp 1960–1963

    Google Scholar 

  43. Leakey MD (1976) The early stone industries of Olduvai Gorge, Tanzania. In: Clark JD, Isaac GL (eds) Les plus anciennes industries en Afrique. Union Internationales des Sciences Préhistoriques et Protohistoriques. UISPP 9th Congrés, Nice, pp 24–41

    Google Scholar 

  44. Lee KS, Jung MC (2015) Ergonomic evaluation of biomechanical hand function. Saf Health Work 6(1):9–17

    Google Scholar 

  45. Lee JW, Rim K (1991) Measurement of finger joint angles and maximum finger forces during cylinder grip activity. J Biomed Eng 13(2):152–162

    Google Scholar 

  46. Lemorini C, Nunziante Cesaro S, Nucara A (2014) An integration of the use-wear and residue analysis for the identification of the function of archaeological stone tools. In: Lemorini C, Nunziante Cesaro S (eds) An integration of the use-wear and residue analysis for the identification of the function of archaeological stone tools. Proceedings of the International Workshop, vol 2649. BAR International Series, Rome

    Google Scholar 

  47. Maki J, Trinkaus E (2011) Opponents pollicis mechanical effectiveness in Neanderthals and early modern humans. Palaeoanthropology:62–71

  48. Malafouris L (2008) Between brains, bodies and things: tectonoetic awareness and the extended self. Philos Trans R Soc Lond B 363(1499):1993–2002

    Google Scholar 

  49. Malafouris L (2010) The brain – artefact interface (BAI): a challenge for archaeology and cultural neuroscience. Soc Cogn Affect Neurosci 5:264–273

    Google Scholar 

  50. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86

    Google Scholar 

  51. Marchand THJ (2012) Knowledge in hand: explorations of brain, hand and tool. In: Fardon R, Marchand THJ, Nuttall M, Shore C, Strang V, Wilson C (eds) Handbook of social anthropology. Sage, London, pp 260–269

    Google Scholar 

  52. Marzke MW (1997) Precision grips, hand morphology, and tools. Am J Phys Anthropol 102:91–110

    Google Scholar 

  53. Marzke MW (2013) Tool making, hand morphology and fossil hominins. Philos Trans R Soc Lond B 368(1630):20120414

    Google Scholar 

  54. Marzke MW, Marzke RF (2000) Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat 197(1):121–140

    Google Scholar 

  55. Marzke MW, Wullstein KL, Viegas SF (1992) Evolution of the power (“squeeze”) grip and its morphological correlates in hominids. Am J Phys Anthropol 89(3):283–298

    Google Scholar 

  56. Marzke MW, Toth N, Schick K, Reece S, Steinberg B, Hunt K, An KN (1998) EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. Am J Phys Anthropol 105(3):315–332

    Google Scholar 

  57. Miller LE, Longo MR, Saygin AP (2014) Tool morphology constrains the effects of tool use on body representations. J Exp Psychol Human 40(6):2143–2153

    Google Scholar 

  58. Miller LE, Montroni L, Koun E, Salemme R, Hayward V, Farnè A (2018) Sensing with tools extends somatosensory processing beyond the body. Nature 561:239–242

    Google Scholar 

  59. Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg 38(4):902–913

    Google Scholar 

  60. Niewoehner WA, Bergstrom A, Eichele D, Zuroff M, Clark JT (2003) Manual dexterity in Neanderthals. Nature 422:395

    Google Scholar 

  61. Patiño FY, Luque M, Terradillos-Bernal M, Martín-Loeches M (2017) Biomechanics of microliths manufacture: a preliminary approach to Neanderthal’s motor constrains in the frame of embodied cognition. J Anthropol Sci 95:203–217

    Google Scholar 

  62. Radhakrishna S, Nagaravindra MC (1993) Analysis of hand forces in health and disease during maximum isometric grasping of cylinders. Med Biol Eng Comput 31:372–376

    Google Scholar 

  63. Rolian C, Lieberman DE, Zermeno JP (2011) Hand biomechanics during simulated stone tool use. J Hum Evol 61(1):26–41

    Google Scholar 

  64. Rossi J, Goislard de Monsabert B, Berton E, Vigouroux L (2014) Does handle shape influence prehensile capabilities and muscle coordination? Comp Meth Biomech Biomed Eng 17:172–173

    Google Scholar 

  65. Schick K, Toth N (2006) An overview of the Oldowan industrial complex: the sites and the nature of their evidence. In: Toth N, Schick K (eds) The Oldowan: case studies into the earliest stone age. Stone Age Institute Press, Gosport, Indiana, pp 3–42

    Google Scholar 

  66. Semaw S, Rogers MJ, Quade J, Renne P, Butler R, Dominguez Rodrigo M, Stout D, Hart W, Pickering T, Simpson S (2003) 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Hum Evol 45:169–177

    Google Scholar 

  67. Seo NJ, Armstrong TJ (2008) Investigation of grip force, normal force, contact area, hand size, and handle size for cylindrical handles. Hum Factors 50(5):734–744

    Google Scholar 

  68. Shea JJ (2013) Lithic modes A–I: a new framework for describing globalscale variation in stone tool technology illustrated with evidence from the East Mediterranean Levant. J Archaeol Method Theory 20:151–186

    Google Scholar 

  69. Shea JJ (2020) Cores and core-tools. In: Prehistoric stone tools of eastern Africa: a guide. Cambridge University Press, Cambridge, pp 137–164

    Google Scholar 

  70. Shipton C, Nielsen M (2018) The acquisition of biface knapping skill in the Acheulean. In: Di Paolo LD, Di Vincenzo F, D’Almeida AF (eds) Evolution of primate social cognition. Springer, Cham, pp 283–297

    Google Scholar 

  71. Silva-Gago M, Fedato A, Rios-Garaizar J, Bruner E (2019) A preliminary survey on hand grip and hand-tool morphometrics in three different stone tools. J Archaeol Sci 23:567–573

    Google Scholar 

  72. Stout D, Hecht E, Khreisheh N, Bradley B, Chaminade T (2015) Cognitive demands of Lower Paleolithic toolmaking. PLoS One 10(4):e0121804

    Google Scholar 

  73. Talsania JS, Kozin SH (1998) Normal digital contribution to grip strength assessed by a computerized digital dynamometer. J Hand Surg 23(2):162–166

    Google Scholar 

  74. Taylor CL, Schwarz RJ (1955) The anatomy and mechanics of the human hand. Artif limbs 2(2):22–35

    Google Scholar 

  75. Toth N (1985) The Oldowan reassessed: a close look at early stone artifacts. J Archeol Sci 12(2):101–120

    Google Scholar 

  76. Toth NP (1987) Behavioral inferences from Early Stone artifact assemblages: an experimental model. J Hum Evol 16:763–787

    Google Scholar 

  77. Toth N, Schick K (2015) Evolution of tool use. In: Muehlenbein MP (ed) Basics in human evolution. Academic Press, pp 193–208

  78. Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. Neuroimage 36:T77–T86

    Google Scholar 

  79. Turvey MT, Carello C (2011) Obtaining information by dynamic (effortful) touching. Philos Trans R Soc Lond B 366:3123–3132

    Google Scholar 

  80. Vaesen K (2012) The cognitive bases of human tool use. Behav Brain Sci 35(4):203–218

    Google Scholar 

  81. Walker J, Lee K (2016) Relationship between Acheulean biface dimensions and hand size. J Lithic Stud Soc 37:5–14

    Google Scholar 

  82. Williams EM, Gordon AD, Richmond BG (2012) Hand pressure distribution during Oldowan stone tool production. J Hum Evol 62:520–532

    Google Scholar 

  83. Williams-Hatala EM, Hatala KG, Gordon M, Key A, Kasper M, Kivell TL (2018) The manual pressures of stone tool behaviors and their implications for the evolution of the human hand. J Hum Evol 119:14–26

    Google Scholar 

  84. Wing AM, Haggard P, Flanagan JR (1996) Hand and brain: the neurophysiology and psychology of hand movements. Academic Press, San Diego

    Google Scholar 

  85. Young RW (2003) Evolution of the human hand: the role of throwing and clubbing. J Anat 202(1):165–174

    Google Scholar 

Download references

Acknowledgments

We are grateful to all the volunteers who participated in this survey and to three anonymous reviewers who supplied useful comments on the early version of this manuscript.

Funding

This study is funded by the Spanish Government (Atapuerca Project; PGC2018-093925-B-C31/32), by the Junta de Castilla y León (EDU/574/2018), and by the Italian Institute of Anthropology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annapaola Fedato.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedato, A., Silva-Gago, M., Terradillos-Bernal, M. et al. Hand grasping and finger flexion during Lower Paleolithic stone tool ergonomic exploration. Archaeol Anthropol Sci 12, 254 (2020). https://doi.org/10.1007/s12520-020-01189-w

Download citation

Keywords

  • Oldowan
  • Acheulean
  • Haptics
  • Ergonomics
  • Tool manipulation