Skip to main content
Log in

Plant taphonomy, flora exploitation and palaeoenvironments at the Middle Stone Age site of Mwulu’s Cave (Limpopo, South Africa): an archaeobotanical and mineralogical approach

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The interior regions of South Africa have had less attention devoted to archaeological research than coastal regions, and palaeoenvironmental studies are also more limited. As such, little is known about the interaction between human behaviours and past environments in these semi-arid regions. Here, we present an archaeobotanical and mineralogical study from the Middle Stone Age site of Mwulu’s Cave, Limpopo Province. Our study shows the importance of using taphonomical approaches prior to interpreting archaeobotanical assemblages, while provides with novel information on the plants used by ancient inhabitants of Mwulu’s. The grass phytolith composition is of environmental significance, where a shift from C4 Panicoideae to C3 grasses is observed in the last occupation event. This tentatively suggests a shift in rainfall regime, from summer rainfall conditions to an increase in winter rain, during Marine Isotope Stage 5b in the Polokwane region, or a decrease in rainfall seasonality. Although we are unable to chronostratigraphically associate this change in the plant composition, our study adds evidence in support of previous propositions for an expansion of the winter rainfall zone into the interior regions of South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert RM (2000) Study of ash layers through phytolith analyses from the Middel palaeolithic levels of Kebara and Tabun caves. Universitat de Barcelona

  • Albert RM, Marean CW (2012) The exploitation of plant resources by early Homo sapiens: the phytolith record from Pinnacle Point 13B Cave, South Africa. Geoarchaeology 27:363–384. https://doi.org/10.1002/gea.21413

    Article  Google Scholar 

  • Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun Caves using a quantitative approach. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. A.A. Balkema Publishers, pp 251–266

  • An XH (2016) Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld 25:116–127. https://doi.org/10.1016/j.palwor.2016.01.002

    Article  Google Scholar 

  • Backwell LR, McCarthy TS, Wadley L et al (2014) Multiproxy record of late Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quat Sci Rev 99:42–59. https://doi.org/10.1016/j.quascirev.2014.06.017

    Article  Google Scholar 

  • Balme BE (1995) Fossil in situ spores and pollen grains: an annotated catalogue. Rev Palaeobot Palynol 87:81–323. https://doi.org/10.1016/0034-6667(95)93235-X

    Article  Google Scholar 

  • Bamford MK (2015) Macrobotanical remains from Wonderwerk Cave (excavation 1), Oldowan to Late Pleistocene (2 Ma to 14 ka bp), South Africa. Afr Archaeol Rev 32:813–838. https://doi.org/10.1007/s10437-015-9200-0

    Article  Google Scholar 

  • Bamford MK, Albert RM, Cabanes D (2006) Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quat Int 148:95–112. https://doi.org/10.1016/j.quaint.2005.11.027

    Article  Google Scholar 

  • Berna F, Behar A, Shahack-Gross R, Berg J, Boaretto E, Gilboa A, Sharon I, Shalev S, Shilstein S, Yahalom-Mack N, Zorn JR, Weiner S (2007) Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). J Archaeol Sci 34:358–373. https://doi.org/10.1016/j.jas.2006.05.011

    Article  Google Scholar 

  • Bryant VM, Holloway RG (1996) Archaeological palynology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. American Association of Stratigraphic Playnologists, Salt Lake City, p 913

    Google Scholar 

  • Burrough SL, Thomas DSG, Bailey RM (2009) Mega-Lake in the Kalahari: a Late Pleistocene record of the Palaeolake Makgadikgadi system. Quat Sci Rev 28:1392–1411. https://doi.org/10.1016/j.quascirev.2009.02.007

    Article  Google Scholar 

  • Cabanes D, Mallol C, Expósito I, Baena J (2010) Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). J Archaeol Sci 37:2947–2957. https://doi.org/10.1016/j.jas.2010.07.010

    Article  Google Scholar 

  • Cabanes D, Shahack-Gross R (2015) Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology. PLoS One 10:e0125532. https://doi.org/10.1371/journal.pone.0125532

    Article  Google Scholar 

  • Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2480–2490. https://doi.org/10.1016/j.jas.2011.05.020

    Article  Google Scholar 

  • Campbell MC, Rutherford MC, Westfall RH (1985) A classification of the mountain vegetation of the Fynbos Biome, Memoirs of. Botanical Research Institute

  • Carrión JS (1992) Late Quaternary pollen sequence from Carihuela Cave, southeastern Spain. Rev Palaeobot Palynol 71:37–77

    Article  Google Scholar 

  • Carrión JS, Munuera M, Navarro C, Burjachs F, Dupré M, Walker MJ (1999) The palaeoecological potential of pollen records in caves: the case of Mediterranean Spain. Quat Sci Rev 18:1061–1073

    Article  Google Scholar 

  • Carrión JS, Scott L (1999) The challenge of pollen analysis in palaeoenvironmental studies of hominid beds: the record from Sterkfontein caves. J Hum Evol 36:401–408. https://doi.org/10.1006/jhev.1998.0276

    Article  Google Scholar 

  • Caseldine C, Fyfe R, Hjelle K (2008) Pollen modelling, palaeoecology and archaeology: virtualisation and/or visualisation of the past? Veg Hist Archaeobotany 17:543–549

    Article  Google Scholar 

  • Chase BM, Meadows ME (2007) Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Rev 84:103–138. https://doi.org/10.1016/j.earscirev.2007.06.002

    Article  Google Scholar 

  • Chazan M, Berna F, Brink J, Ecker M, Holt S, Porat N, Thorp JL, Horwitz LK (2020) Archeology, environment, and chronology of the Early Middle Stone Age component of Wonderwerk Cave. J Paleolit Archaeol:1–34. https://doi.org/10.1007/s41982-020-00051-8

  • Cockcroft MJ, Wilkinson MJ, Tyson PD (1987) The application of a present-day climatic model to the Late Quaternary in Southern Africa. Clim Chang 10:161–181

    Article  Google Scholar 

  • Collura LV, Neumann K (2017) Wood and bark phytoliths of West African woody plants. Quat Int 434:142–159. https://doi.org/10.1016/j.quaint.2015.12.070

    Article  Google Scholar 

  • Cordova CE (2013) C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quat Int 287:121–140. https://doi.org/10.1016/j.quaint.2012.04.022

    Article  Google Scholar 

  • Davis OK (1990) Caves as sources of biotic remains in arid western North America. Palaeogeogr Palaeoclimatol Palaeoecol 76:331–348

    Article  Google Scholar 

  • de la Peña P, Val A, Stratford DJ, Colino F, Esteban I, Fitchett JM, Hodgskiss T, Matembo J, Moll R (2019) Revisiting Mwulu’s Cave: new insights into the Middle Stone Age in the southern African savanna biome. Archaeol Anthropol Sci 11:3239–3266. https://doi.org/10.1007/s12520-018-0749-9

    Article  Google Scholar 

  • Esteban I, De Vynck JC, Singels E et al (2017a) Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quat Int 434:160–179. https://doi.org/10.1016/j.quaint.2016.01.037

    Article  Google Scholar 

  • Esteban I, Marean CW, Cowling RM, Fisher EC, Cabanes D, Albert RM (2020) Palaeoenvironments and plant availability during MIS 6 to MIS 3 on the edge of the Palaeo-Agulhas Plain (south coast, South Africa) as indicated by phytolith analysis at Pinnacle Point. Quat Sci Rev 235:105667. https://doi.org/10.1016/J.QUASCIREV.2019.02.022

    Article  Google Scholar 

  • Esteban I, Marean CW, Fisher EC, Karkanas P, Cabanes D, Albert RM (2018) Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa). PLoS One 13:e0198558. https://doi.org/10.1371/journal.pone.0198558

    Article  Google Scholar 

  • Esteban I, Vlok JHJ, Kotina EL, Bamford MK, Cowling RM, Cabanes D, Albert RM (2017b) Phytoliths in plants from the south coast of the Greater Cape Floristic Region (South Africa). Rev Palaeobot Palynol 245:69–84. https://doi.org/10.1016/j.revpalbo.2017.05.001

    Article  Google Scholar 

  • Faegri K, Iversen I, Krzywinski K (1989) Textbook of pollen analysis. John Wiley and Sons

  • Feathers JK, Evans M, Stratford DJ, de la Peña P (2020) Exploring complexity in luminescence dating of quartz and feldspars at the Middle Stone Age site of Mwulu’s cave (Limpopo, South Africa). Quat Geochronol 59:101092. https://doi.org/10.1016/j.quageo.2020.101092

    Article  Google Scholar 

  • Fisher EC, Albert RM, Botha G, et al (2013) Archaeological Reconnaissance for Middle Stone Age sites along the Pondoland Coast, South Africa. PaleoAnthropol 104–137. https://doi.org/10.4207/PA.2013.ART82

  • Fisher EC, Cawthra HC, Esteban I, Jerardino A, Neumann FH, Oertle A, Pargeter J, Saktura RB, Szabó K, Winkler S, Zohar I (2020) Coastal occupation and foraging during the last glacial maximum and early Holocene at Waterfall Bluff, eastern Pondoland, South Africa. Quat Res 1–41. https://doi.org/10.1017/qua.2020.26

  • Fitchett JM, Bamford MK (2017) The validity of the Asteraceae: Poaceae fossil pollen ratio in discrimination of the southern African summer- and winter-rainfall zones. Quat Sci Rev 160:85–95. https://doi.org/10.1016/j.quascirev.2017.02.008

    Article  Google Scholar 

  • Fitchett JM, Grab SW, Bamford MK, Mackay AW (2017) Late Quaternary research in southern Africa: progress, challenges and future trajectories. Trans R Soc S Afr 72:280–293

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206. https://doi.org/10.1016/j.chemgeo.2008.10.003

    Article  Google Scholar 

  • Fredlund GG, Tieszen LL (1994) Modern phytolith assemblages from the North American great plains. J Biogeogr 21:321–335. https://doi.org/10.2307/2845533

    Article  Google Scholar 

  • Gordon-Gray KD (1995) Cyperaceae in natal. South African National Biodiversity Institut- SANBI

  • Henderson Z, Scott L, Rossouw L, Jacobs Z (2006) Dating, paleoenvironments, and archaeology: a progress report on the Sunnyside 1 Site, Clarens, South Africa. Archeol ofthe Am Anthropol Assoc 16:139–149

    Google Scholar 

  • Henshilwood CS, D’errico F, Marean CW et al (2001) An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language. J Hum Evol 41:631–678. https://doi.org/10.1006/JHEV.2001.0515

    Article  Google Scholar 

  • Henshilwood CS, D’Errico F, Vanhaeren M et al (2004) Middle Stone Age shell beads from South Africa. Science (80-) 304:404. https://doi.org/10.1126/science.1095905

    Article  Google Scholar 

  • Henshilwood CS, D’Errico F, Watts I (2009) Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. J Hum Evol 57:27–47. https://doi.org/10.1016/J.JHEVOL.2009.01.005

    Article  Google Scholar 

  • Horwitz LK, Chazan M (2015) Past and present at Wonderwerk Cave (Northern Cape Province, South Africa). Afr Archaeol Rev 32:595–612. https://doi.org/10.1007/s10437-015-9208-5

    Article  Google Scholar 

  • Karkanas P, Bar-Yosef O, Goldberg P, Weiner S (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J Archaeol Sci 27:915–929. https://doi.org/10.1006/jasc.1999.0506

    Article  Google Scholar 

  • Karkanas P, Rigaud JP, Simek JF, Albert RM, Weiner S (2002) Ash bones and guano: a study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. J Archaeol Sci 29:721–732. https://doi.org/10.1006/jasc.2001.0742

    Article  Google Scholar 

  • Katz O, Cabanes D, Weiner S, Maeir AM, Boaretto E, Shahack-Gross R (2010) Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. J Archaeol Sci 37:1557–1563. https://doi.org/10.1016/j.jas.2010.01.016

    Article  Google Scholar 

  • Lebreton V, Messager E, Marquer L, Renault-Miskovsky J (2010) A neotaphonomic experiment in pollen oxidation and its implications for archaeopalynology. Rev Palaeobot Palynol 162:29–38

    Article  Google Scholar 

  • Liengme C (1987) Botanical remains from archaeological sites in the western Cape. In: Parkington JE, Hall M (eds) Papers in the Prehistory of the Western Cape, South Africa, 332nd edn. British Archaeological Reports International Series, Oxford, pp 237–261

    Google Scholar 

  • Liengme CA (1983) A survey of ethnobotanical research in southern Africa. Bothalia 14:621–629. https://doi.org/10.4102/abc.v14i3/4.1219

    Article  Google Scholar 

  • Lukich V, Cowling S, Chazan M (2020) Palaeoenvironmental reconstruction of Kathu Pan, South Africa, based on sedimentological data. Quat Sci Rev 230:106153. https://doi.org/10.1016/j.quascirev.2019.106153

    Article  Google Scholar 

  • Lukich V, Porat N, Faershtein G, Cowling S, Chazan M (2019) New chronology and stratigraphy for Kathu Pan 6, South Africa. J Paleolit Archaeol 2:235–257. https://doi.org/10.1007/s41982-019-00031-7

    Article  Google Scholar 

  • Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10. https://doi.org/10.1016/S0924-2031(02)00065-6

    Article  Google Scholar 

  • Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719. https://doi.org/10.1006/jasc.2001.0743

    Article  Google Scholar 

  • Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83. https://doi.org/10.1016/j.quaint.2011.09.008

    Article  Google Scholar 

  • Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I, Williams HM (2007) Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905–908. https://doi.org/10.1038/nature06204

    Article  Google Scholar 

  • McLean B, Scott L (1999) Phytoliths in sediments of the Pretoria Saltpan and their potential as indicators of environmental history at the site. 167–171

  • McNabb J, Sinclair A, Wadley L et al (2009) The cave of hearths: Makapan Middle Pleistocene Research Project: field research by Anthony Sinclair and Patrick Quinney, 1996–2001. Archaeopress, Oxford

    Book  Google Scholar 

  • Mercader J, Bennett T, Esselmont C, Simpson S, Walde D (2009) Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann Bot 104:91–113. https://doi.org/10.1093/aob/mcp097

    Article  Google Scholar 

  • Mucina L, Hoare DB, Lötter MC, et al (2006) Grassland Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesothis and Swaziland. South African National Biodiversity Institute

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute

  • Müller CM, Pejcic B, Esteban L, Piane CD, Raven M, Mizaikoff B (2014) Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems. Sci Rep 4:6764. https://doi.org/10.1038/srep06764

    Article  Google Scholar 

  • Murungi ML (2017) Phytoliths at Sibudu (South Africa): implications for vegetation, climate and human occupation during the MSA. University of the Witwatersrand

  • Neumann K, Strömberg CAE, Ball T et al (2019) International code for phytolith nomenclature 2.0. Ann Bot 124:189–199. https://doi.org/10.1093/aob/mcz064

    Article  Google Scholar 

  • Novello A, Bamford MK, Van Wijk Y, Wurz S (2018) Phytoliths in modern plants and soils from Klasies River, Cape Region (South Africa). Quat Int 464:440–459. https://doi.org/10.1016/j.quaint.2017.10.009

    Article  Google Scholar 

  • Novello A, Barboni D, Berti-Equille L, Mazur JC, Poilecot P, Vignaud P (2012) Phytolith signal of aquatic plants and soils in Chad, Central Africa. Rev Palaeobot Palynol 178:43–58. https://doi.org/10.1016/j.revpalbo.2012.03.010

    Article  Google Scholar 

  • Ollis D, Snaddon K, Job N, Mbona N (2013) Classification system for wetlands and other aquatic ecosystems in South Africa. South African National Biodiversity Institut- SANBI

  • Parkington J (2003) Middens and moderns: shellfishing and the Middle Stone Age of the Western Cape, South Africa. S Afr J Sci 99:243–247

    Google Scholar 

  • Pearsall DM (2000) Paleoethnobotany: a handbook of procedures. Academic Press, San Diego

    Google Scholar 

  • Pearsall DM (2014) Formation processes of pollen and phytoliths. In: Marston JM, Guedes J, d’Alpoi M, Warinn C (eds) Method and theory in paleoethnobotany. University Press of Colorado, pp 51–76

  • Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  • Porraz G, Val A, Dayet L et al (2015) Bushman Rock Shelter (Limpopo, South Africa): a perspective from the edge of the Highveld. South African Archaeol Bull 70:166–179 146.141.14.132

    Google Scholar 

  • Porraz G, Val A, Tribolo C, Mercier N, de la Peña P, Haaland MM, Igreja M, Miller CE, Schmid VC (2018) The MIS5 pietersburg at 28’ bushman rock Shelter, Limpopo Province, South Africa. PLoS One 13:e0202853. https://doi.org/10.1371/journal.pone.0202853

    Article  Google Scholar 

  • Rayner RJ, Moon BP, Masters JC (1993) The Makapansgat australopithecine environment. J Hum Evol 24:219–231. https://doi.org/10.1006/jhev.1993.1016

    Article  Google Scholar 

  • Repinski P, Holmgren K, Lauritzen SE, Lee-Thorp JA (1999) A late Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 150:269–277. https://doi.org/10.1016/S0031-0182(98)00223-5

    Article  Google Scholar 

  • Roffe SJ, Fitchett JM, Curtis CJ (2020) Determining the utility of a percentile-based wet-season start- and end-date metrics across South Africa. Theor Appl Climatol 140:1331–1347. https://doi.org/10.1007/s00704-020-03162-y

    Article  Google Scholar 

  • Rossouw L (2009) The application of fossil grass-phytolith analysis in the reconstruction of late Cainozoic environments in the South African interior. University of the Free State, South Africa

    Google Scholar 

  • Rutherford MC, Mucina L, Lötter MC, et al (2006) Savanna Biome. In: Mucina L, Rutherford M (eds) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, pp 429–529

  • Schiegl S, Conard NJ (2006) The Middle Stone Age sediments at Sibudu: results from FTIR spectroscopy and microscopic analyses. South Afr Humanit 18:149–172

    Google Scholar 

  • Schiegl S, Goldberg P, Bar-Yosef O, Weiner S (1996) Ash deposits in Hayonim and Kebara caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications. J Archaeol Sci 23:763–781. https://doi.org/10.1006/jasc.1996.0071

    Article  Google Scholar 

  • Schiegl S, Stockhammer P, Scott C, Wadley L (2004) A mineralogical and phytolith study of the Middle Stone Age hearths in Sibudu Cave, KwaZulu-Natal, South Africa: Sibudu Cave. S Afr J Sci 100:185–194

    Google Scholar 

  • Schulze BR (1984) Climate of South Africa, Part 8, General Survey, WB 28. South African Weather Bur 60

  • Scott L (1989) Late Quaternary vegetation history and climatic change in the eastern Orange Free State, South Africa. South African J Bot 55:107–116. https://doi.org/10.1016/s0254-6299(16)31238-8

    Article  Google Scholar 

  • Scott L (1987) Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, southern Kalahari (South Africa). Quat Res 28:144–156. https://doi.org/10.1016/0033-5894(87)90039-1

    Article  Google Scholar 

  • Scott L (1999) Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater ( the Pretoria Saltpan ) and Wonderkrater. Quat Int 57(58):215–223

    Article  Google Scholar 

  • Scott L, Neumann FH (2018) Pollen-interpreted palaeoenvironments associated with the Middle and Late Pleistocene peopling of Southern Africa. Quat Int 495:169–184

    Article  Google Scholar 

  • Scott L, Nyakale M (2002) Pollen indications of Holocene palaeoenvironments at Florisbad spring in the central Free State, South Africa. The Holocene 12:497–503

    Article  Google Scholar 

  • Sherman Hsu C-P (1997) Infrared spectroscopy. In: Settle FA (ed) Handbook of instrumental techniques for analytical chemistry. Prentice Hall, Upper Saddle River, pp 247–284

    Google Scholar 

  • Sievers C, Muthama Muasya A (2011) Identification of the sedge Cladium mariscus subsp. jamaicense and its possible use in the Middle Stone Age at Sibudu, KwaZulu-Natal. South Afr Humanit 23:77–86

    Google Scholar 

  • Sjolte J, Hoffmann G (2014) Modelling stable water isotopes in monsoon precipitation during the previous interglacial. Quat Sci Rev 85:119–135

    Article  Google Scholar 

  • Smith EI, Jacobs Z, Johnsen R, Ren M, Fisher EC, Oestmo S, Wilkins J, Harris JA, Karkanas P, Fitch S, Ciravolo A, Keenan D, Cleghorn N, Lane CS, Matthews T, Marean CW (2018) Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature 555:511–515. https://doi.org/10.1038/nature25967

    Article  Google Scholar 

  • Stager JC, Ryves DB, King C, Madson J, Hazzard M, Neumann FH, Maud R (2013) Late Holocene precipitation variability in the summer rainfall region of South Africa. Quat Sci Rev 67:105–120

    Article  Google Scholar 

  • Thackeray JF, Fitchett JM (2016) Rainfall seasonality captured in micromammalian fauna in Late Quaternary contexts, South Africa. Paleontol africana 51:1–9

    Google Scholar 

  • Tobias PV (1949) The excavation of Mwulu’s Cave, Potgietersrust District. South African Archaeol Bull 4:2–13

    Article  Google Scholar 

  • Tobias PV (1954) Climatic fluctuations in the middle stone age of South Africa, as revealed in Mwulu’s Cave. Trans R Soc South Africa 34:325–334. https://doi.org/10.1080/00359195409518990

    Article  Google Scholar 

  • Toffolo MB, Brink JS, van Huyssteen C, Berna F (2017) A microstratigraphic reevaluation of the Florisbad spring site, Free State Province, South Africa: Formation processes and paleoenvironment. Geoarchaeology 32:456–478. https://doi.org/10.1002/gea.21616

    Article  Google Scholar 

  • Tsartsidou G, Lev-Yadun S, Albert RM, Miller-Rosen A, Efstratiou N, Weiner S (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34:1262–1275. https://doi.org/10.1016/j.jas.2006.10.017

    Article  Google Scholar 

  • Turner S, Plater A (2004) Palynological evidence for the origin and development of late Holocene wetland sediments: Mdlanzi Swamp, KwaZulu-Natal, South Africa. S Afr J Sci 100:220–229

    Google Scholar 

  • Tyson PD, Preston-Whyte RA (2000) The weather and climate of southern Africa. Oxford University Press

  • Vahur S, Teearu A, Peets P, Joosu L, Leito I (2016) ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm-1. Anal Bioanal Chem 408:3373–3379. https://doi.org/10.1007/s00216-016-9411-5

    Article  Google Scholar 

  • Valladas H, Wadley L, Mercier N et al (2005) Thermoluminescence dating on burnt lithics from Middle Stone Age layers at Rose Cottage Cave. S Afr J Sci 101:169–174

    Google Scholar 

  • van Aardt A, Bousman CB, Brink J et al (2015) First chronological, Palaeoenvironmental, and archaeological data from the Baden-Baden fossil spring complex in the western Free State, South Africa. Palaeoecol Africa 33:117–152. https://doi.org/10.1201/b19410-9

    Article  Google Scholar 

  • Van Wilgen BW, Richardson DM (2012) Three centuries of managing introduced conifers in South Africa: benefits, impacts, changing perceptions and conflict resolution. J Environ Manag 106:56–68

    Article  Google Scholar 

  • van Wyk B-E (2002) A review of ethnobotanical research in South Africa. South African J Bot 68:1–13

    Article  Google Scholar 

  • van Wyk B-E, Gericke N (2000) People’s plants: a guide to useful plants of southern Africa. Briza Publications, Johannesburg

    Google Scholar 

  • van Zinderen Bakker EM (1976) Paleoecological background in connection with the origin of agriculture in Africa. In: Origins of African Plant Domestication. Mouton Publishers Press, pp 43–63

  • Wadley L (2010) Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Curr Anthropol 51:S111–S119. https://doi.org/10.1086/649836

    Article  Google Scholar 

  • Wadley L, Esterhuysen A, Jeannerat C (1992) Vegetation changes in the eastern Orange Free State: the Holocene and later Pleistocene evidence from charcoal studies at Rose Cottage. S Afr J Sci 88:558–563

    Google Scholar 

  • Wadley L, Murungi ML, Witelson D et al (2016) Steenbokfontein 9KR: a middle stone age spring site in Limpopo, South Africa. South African Archaeol Bull 71:130–145

    Google Scholar 

  • Wadley L, Sievers C, Bamford MK et al (2011) Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science (80-):334, 1388–1391. https://doi.org/10.1126/science.1213317

  • Weiner S (2010) Microarchaeology. Beyond the visible archaeological record. Cambridge University Press

  • Weiner S, Goldberg P, Bar-Yosef O (2002) Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archaeological implications. J Archaeol Sci 29:1289–1308. https://doi.org/10.1006/jasc.2001.0790

    Article  Google Scholar 

  • Wilkins J, Chazan M (2012) Blade production ∼500 thousand years ago at Kathu Pan 1, South Africa: support for a multiple origins hypothesis for early Middle Pleistocene blade technologies. J Archaeol Sci 39:1883–1900. https://doi.org/10.1016/J.JAS.2012.01.031

    Article  Google Scholar 

  • Wilkins J, Schoville BJ, Brown KS, et al (2020) Fabric analysis and chronology at Ga-Mohana Hill North Rockshelter, Southern Kalahari Basin: evidence for In Situ, Stratified Middle and Later Stone Age deposits. J Paleolit Archaeol 1–26. https://doi.org/10.1007/s41982-020-00050-9

  • Wurz S (2012) The significance of MIS 5 shell middens on the Cape coast: a lithic perspective from Klasies River and Ysterfontein 1. Quat Int 270:61–69. https://doi.org/10.1016/J.QUAINT.2011.06.032

    Article  Google Scholar 

Download references

Acknowledgements

IE acknowledges the support of the DSI/NRF Centre of Excellence in Palaeosciences (CoE in Palaeosciences) towards this research. We thank Prosper Bande for the preparation of the pollen samples for analysis. We thank two anonymous reviewers for helpful comments on the manuscript.

Funding

PdlP is grateful to The Palaeontological Scientific Trust (PAST), Johannesburg, South Africa, and CoE in Palaeosciences for providing three research grants for Mwulu’s Cave project for field work research (2017) and dating (2018). JF acknowledges the DSI and NRF Rated Researchers Incentive Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Esteban.

Ethics declarations

Disclaimer

Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE in Palaeosciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 15 kb)

ESM 2

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteban, I., Fitchett, J. & de la Peña, P. Plant taphonomy, flora exploitation and palaeoenvironments at the Middle Stone Age site of Mwulu’s Cave (Limpopo, South Africa): an archaeobotanical and mineralogical approach. Archaeol Anthropol Sci 12, 226 (2020). https://doi.org/10.1007/s12520-020-01181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01181-4

Keywords

Navigation