Skip to main content

Archaeomagnetic study of a limekiln in the Les Ferreres Roman aqueduct, World Heritage Site of Tarraco


The aqueduct of Les Ferreres is a major element of the Archaeological Ensemble of Tarraco. Although the ashlars of the aqueduct are stacked without mortar, lime was used in some parts and lime was certainly used in later repairs. Worthy of note is a coating mortar used in a well-documented restoration (1854–1856). In this study, a limekiln found near the Roman aqueduct has been archaeomagnetically dated to determine if it was used for the construction of the aqueduct or in later repairs. The mean values for the measured archaeomagnetic direction from the limekiln were compared with two different archaeomagnetic models (SCHA.DIF.3k and GUMF1), and both indicate that the limekiln is modern with ages only slightly older than the well-documented restoration. The extensive use of the coating mortar in that restoration is consistent with the need of onsite lime production. Additional archaeomagnetic intensity has not contributed to constrain further the obtained archaeomagnetic age but the intensity datum can be added to archaeomagnetic intensity datasets to enhance geomagnetic intensity field models. The paper illustrates how archaeomagnetic dating can be useful to characterize secondary structures of major cultural heritage monuments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Adell JA, Menchon J (2011) Acueducto Romano. Tarragona. In: Recuperar el Patrimonio, una mirada en profundidad, tomo II. Ministerio de Fomento, Madrid, pp. 20–25

  2. Adie BA (2017) Franchising our heritage: the UNESCO World Heritage brand. Tour Manag Perspect 24:48–53.

    Article  Google Scholar 

  3. Brown MC, Donadini F, Korte M, et al (2015) GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database Recent advances in environmental magnetism and paleomagnetism. Earth, Planets Sp 67:.

  4. Casas L, Tema E (2019) Investigating the expected archaeomagnetic dating precision in Europe: a temporal and spatial analysis based on the SCHA.DIF.3K geomagnetic field model. J Archaeol Sci 108:104972.

    Article  Google Scholar 

  5. Casas L, Prevosti M, Fouzai B, Álvarez A (2014a) Archaeomagnetic study and dating at five sites from Catalonia (NE Spain). J Archaeol Sci 41:856–867.

    Article  Google Scholar 

  6. Casas L, Ramírez J, Navarro A, Fouzai B, Estop E, Rosell JR (2014b) Archaeometric dating of two limekilns in an industrial heritage site in Calders (Catalonia, NE Spain). J Cult Herit 15:550–556.

    Article  Google Scholar 

  7. Casas L, Auguet C, Cantoni G, Vilar JL, Guasch N, Prevosti M (2018) Using archaeomagnetism to improve the dating of three sites in Catalonia (NE Spain). J Cult Herit 31:152–161.

    Article  Google Scholar 

  8. Coe RS (1967) Paleo-intensities of the Earth’s magnetic field determined from Tertiary and Quaternary rockstle. J Geophys Res 72:3247–3262.

    Article  Google Scholar 

  9. Fisher R (1953) Dispersion on a sphere. Proc R Soc LondonSeries AMathematical Phys Sci 217:295–305.

    Article  Google Scholar 

  10. Gaceta de Madrid (1905) Gaceta de Madrid. In: Agencia Estatal Boletín Of. del Estado, Gac. Madrid 102.

  11. Genevey A, Gallet Y, Constable CG, et al (2008) ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochemistry, Geophys Geosystems 9:.

  12. Gómez-Paccard M, Chauvin A, Lanos P, Thiriot J, Jiménez-Castillo P (2006a) Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain). Phys Earth Planet Inter 157:16–32.

    Article  Google Scholar 

  13. Gómez-Paccard M, Chauvin A, Lanos P, McIntosh G, Osete ML, Catanzariti G, Ruiz-Martínez VC, Núñez JI (2006b) First archaeomagnetic secular variation curve for the Iberian Peninsula: comparison with other data from western Europe and with global geomagnetic field models. Geochemistry, Geophys Geosystems 7:Q12001.

    Article  Google Scholar 

  14. Gómez-Paccard M, Chauvin A, Lanos P, Dufresne P, Kovacheva M, Hill MJ, Beamud E, Blain S, Bouvier A, Guibert P (2012) Improving our knowledge of rapid geomagnetic field intensity changes observed in Europe between 200 and 1400 AD. Earth Planet Sci Lett 355–356:131–143.

    Article  Google Scholar 

  15. Hernández Sanahuja B (1867) El Indicador arqueológico de Tarragona: manual descriptivo de las antigüedades que se conservan en dicha ciudad y sus cercanías, con designación de los puntos donde se encuentran y ruta que debe seguirse para recorrerlos con facilidad. Puigrubi y Aris

  16. Hernández Sanahuja B (1946) Acueducto romano en Tarragona (1857). Boletín Arqueol época IV:16–32

  17. Hervé G, Schnepp E, Chauvin A, Lanos P, Nowaczyk N (2011) Archaeomagnetic results on three Early Iron Age salt-kilns from Moyenvic (France). Geophys J Int 185:144–156.

    Article  Google Scholar 

  18. Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc London Ser A-Mathematical Phys Eng Sci 358:957–990.

    Article  Google Scholar 

  19. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Int 62:699–718.

    Article  Google Scholar 

  20. Korhonen K, Donadini F, Riisager P, Pesonen LJ (2008) GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochemistry, Geophys Geosystems 9:n/a-n/a.

  21. Linford P, Shaw J, Casas L (2007) Archaeomagnetic dating of Dogmersfield Park brick kiln (Southern England). J Archaeol Sci 34:205–213

    Article  Google Scholar 

  22. Macias JM, Rodà I (2015) Tarraco, the first capital. Catalan Hist Rev 8:9–28.

    Article  Google Scholar 

  23. Mar R, Ruiz de Arbulo J, Vivó D, et al (2015) El acueducto de les Ferreres. In: Tarraco. Arquitectura y urbanismo de una capital provincial romana. Volumen II La ciudad imperial. Documents d’Arqueologia Clàssica 6. Universitat Rovira i Virgili, Tarragona, pp 56–59

  24. Néel L (1955) Some theoretical aspects of rock-magnetism. Adv Phys 4:191–243.

    Article  Google Scholar 

  25. Paterson GA, Tauxe L, Biggin AJ, et al (2014) Standard paleointensity definitions.

  26. Pavón-Carrasco FJ, Osete ML, Torta M, Gaya-Piqué LR (2009) A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating. Geochemistry Geophys Geosystems 10:Q03013.

    Article  Google Scholar 

  27. Pavón-Carrasco FJ, Rodríguez-González J, Osete ML, Torta M (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38:408–419.

    Article  Google Scholar 

  28. Pick T, Tauxe L (1993) Holocene paleointensities: Thellier Experiments on submarine basaltic glass from the East Pacific Rise. J Geophys Res Solid Earth 98:17949–17964.

    Article  Google Scholar 

  29. Prada JL, Guasch N, Badia M (2012) Memòria d’investigació - Informe Final: Diagnòstic geològic i biològic, i de l’estat de conservació de l’aqüeducte romà de Tàrraco

  30. Prevosti M, Casas L, Roig Pérez JF, Fouzai B, Álvarez A, Pitarch À (2013) Archaeological and archaeomagnetic dating at a site from the ager Tarraconensis (Tarragona, Spain): El Vila-sec Roman pottery. J Archaeol Sci 40:2686–2701.

    Article  Google Scholar 

  31. Prévot M, Mankinen EA, Coe RS, Grommé CS (1985) The Steens Mountain (Oregon) geomagnetic polarity transition: 2. Field intensity variations and discussion of reversal models. J Geophys Res Solid Earth 90:10417–10448.

    Article  Google Scholar 

  32. Thellier E, Thellier O (1959) Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann Géophysique 15:285–376

    Google Scholar 

Download references


The authors would like to thank the Paleomagnetic Laboratory CCiTUB-ICTJA CSIC where the archaeomagnetic measurements were conducted. Thanks to Salvador López for carrying out part of measurements. Dr. Gregg A. Paterson, who reviewed the manuscript, and the editor are also acknowledged for their suggestions.


This research was funded by the Spanish Ministerio de Economía y Competitividad (project CGL2013-42167-P). MGP also acknowledges the Ramón y Cajal program and the CGL2015-63888-R (MINECO/FEDER) project of the Spanish Ministerio de Economía y Competitividad. Research by APM was funded by the Beatriu de Pinós postdoctoral program (2017 BP-A 00046), the Consolidated Research group programs (2017SGR00011 and 2017SGR00970) of the Government of Catalonia’s Secretariat for Universities and Research of the Ministry of Economy and Knowledge, and R+D project (HAR2017-86509-P) of the Spanish Ministry of Science, Innovation and Universities.

Author information



Corresponding author

Correspondence to Lluís Casas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casas, L., Auguet, C., Guasch-Ferré, N. et al. Archaeomagnetic study of a limekiln in the Les Ferreres Roman aqueduct, World Heritage Site of Tarraco. Archaeol Anthropol Sci 12, 212 (2020).

Download citation


  • Archaeomagnetism
  • Dating
  • Mortar
  • Geomagnetic field modeling
  • UNESCO WH List