Ceramic abandonment. How to recognise post-depositional transformations

Abstract

After they have been abandoned, ceramic materials may undergo substantial transformations, all of which may change their macroscopic aspect, mineralogy, chemical composition and microstructure. The intensity and pervasiveness of these transformations on both macro- and micro-scales depend to a great extent not only on their compositional and microstructural features but also on the chemical-physical characteristics of the post-depositional environment in which they were hosted. This contribution describes the main post-depositional transformations observed in ancient ceramics in relation to secondary phases precipitation, mineral dissolution, pristine mineral and amorphous phases transformations into new mineral phases, and chemical leaching and enrichment. The mechanisms responsible for these transformations are described, together with the characteristics which allow us to identify them according to the most common analytical approaches, in order not to introduce misleading interpretations concerning the study of the provenance and production technology of ancient ceramic materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data sharing is not applicable to this review article as no new data were created or analysed in this study.

References

  1. Aloupi-Sioti E (2020) Ceramic technology. How to characterise black Fe-based glass-ceramic coatings. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01134-x

  2. Amadori ML, Baldassari R, Lanza S, Maione M, Penna A, Acquaro E (2002) Archaeometric study of Punic amphorae from the underwater recoveries of Pantelleria island (Sicily). Revue d’Archéométrie 26:79–91

    Google Scholar 

  3. Baklouti S, Maritan L, Ouazaa NL, Casas L, Joron JL, Larabi Kassaa S, Moutte J (2014) Provenance and reference groups of African red slip ware based on statistical analysis of chemical data and REE. J Archaeol Sci 50:524–538

    Google Scholar 

  4. Baklouti S, Maritan L, Ouazaa NL, Mazzoli C, Larabi Kassaa S, Joron JL, Fouzaï B, Casas Duocastella L, Labayed-Lahdari M (2015) African terra sigillata from Henchir Es-Srira archaeological site, Central Tunisia: archaeological provenance and raw materials based on chemical analysis. Appl Clay Sci 105-106:27–40

    Google Scholar 

  5. Baklouti S, Maritan L, Casas Duocastella L, Laridhi Ouazaa N, Jérrega R, Prevosti M, Mazzoli C, Fouzaï B, Larabi Kassaa S, Fantar M (2016) Establishing a new reference group of Keay 25.2 amphorae from Sidi Zahruni (Nabeul, Tunisia). Appl Clay Sci 132-133:140–154

    Google Scholar 

  6. Baklouti S, Maritan L, Casas Duocastella L, Jàrrega R, Prevosti M, Mazzoli C, Laridhi Ouazaa N (2018) Archaeometric study of African Keay 25.2 amphorae in Catalonia (Spain): a history of importation and imitation. Eur J Mineral 30:759–772

    Google Scholar 

  7. Barker A, Dombrosky J, Venables B, Wolverton S (2018) Taphonomy and negative results: an integrated approach to ceramic- bound protein residue analysis. J Archaeol Sci 94:32–43

    Google Scholar 

  8. Béarat H, Dufournier D, Nguyen Y, Raveau B (1989) Influence de NaCl sur la couleur et la composition chimique de pâtes céramiques calcaires au cours de leurs caisson. Revue d’Archéométrie 13:43–53

    Google Scholar 

  9. Béarat H, Dufournier D, Nouet Y (1992) Alterations of ceramics due to contact with seawater. Archaeologia Polona 30:151–162

    Google Scholar 

  10. Buxeda i Garrigós J (1999) Alteration and contamination of archaeological ceramics: the perturbation problem. J Archaeol Sci 26:295–313

    Google Scholar 

  11. Buxeda i Garrigós J, Kilikoglou V, Day PM (2001) Chemical and mineralogical alteration of ceramic from Late Bronze Age kiln at Kommos, Crete: the effect on the formation on a reference group. Archaeometry 43:349–371

    Google Scholar 

  12. Buxeda i Garrigós J, Mommsen H, Tsolakidou A (2002) Alteration of Na, K and Rb concentrations in Mycenaean pottery and a proposed explanation using X-ray diffraction. Archaeometry 44:187–198

    Google Scholar 

  13. Buxeda i Garrigós J, Cau Ontiveros MA, Madrid i Fernández M, Toniolo A (2005) Roman amphorae from the Iulia Felix shipwreck: alteration and provenance. In: Hars H and Burke E (eds). Proceedings of the 33rd International Symposium on Archaeometry, Geoarchaeological and Bioarchaeological Studies, Vol. 3, Institute for geo- and bio-archaeology, Vrije Universiteit, Amsterdam, pp. 149–151

  14. Casas L, Tema E (2019, 2019) Investigating the expected archaeomagnetic dating precision in Europe: a temporal and spatial analysis based on the SCHA.DIF.3K geomagnetic field model. J Archaeol Sci. https://doi.org/10.1016/j.jas.2019.104972

  15. Casellato U, Fenzi F, Riccardi MP, Rossi Osmida G, Vigato PA (2007) Physico-chemical and mineralogical study of ceramic findings from Mary City – Turkmenistan. J Cult Herit 8:412–422

    Google Scholar 

  16. Cau Ontiveros MA, Day PM, Montana G (2002) Secondary calcite in archaeological ceramics: evaluation of alteration and contamination processes by thin section study. In: Kilikoglou V, Hein A, Maniatis Y (eds) Proceedings of the 5th European meeting on ancient ceramics modern trends in scientific studies on ancient ceramics, BAR International Series 1011. Archaeopress, Oxford, pp 9–18

    Google Scholar 

  17. Coletti C, Mazzoli C, Maritan L, Cultrone G (2016) Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact 121:82–92

    Google Scholar 

  18. Collomb P, Maggetti M (1996) Dissolution des phosphates présents dans des céramiques contaminées. Revue d’Archéométrie 20:69–75

    Google Scholar 

  19. Costa ML, Rodrigues SFS, Silva GJS, Pöllmann H (2012) Crandallite formation in archaeological potteries found in the Amazonian dark earth soils. In: Broekmans MA (ed) Proceedings of the 10th International Congress for Applied Mineralogy. Springer, New York, pp 137–144

    Google Scholar 

  20. Coutinho ML, Miller AZ, Macedo MF (2015) Biological colonization and biodeterioration of architectural ceramic materials: an overview. J Cult Herit 16:759–777

    Google Scholar 

  21. Cremaschi M (2000) Manuale di Geoarcheologia. Laterza, Bari

    Google Scholar 

  22. Cremaschi M, Trombino L, Zerboni A (2018) Palaeosoils and relict soils, a systematic review. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths, Revised edn. Elsevier, Amsterdam, pp 863–894

    Google Scholar 

  23. Crisci GM, La Russa MF, Macchione M, Malagodi M, Palermo AM, Ruffolo SA (2010) Study of archaeological underwater finds: deterioration and conservation. Applied Physics A 100:855–863

    Google Scholar 

  24. De Bonis A, Febbraro S, Germinario C, Giampaola D, Grifa C, Guarino V, Langella A, Morra V (2016) Distinctive volcanic material for the production of Campana A ware: the workshop area of Neapolis at the Duomo Metro Station (Naples, Italy). Geoarchaeology. 31:437–466. https://doi.org/10.1002/gea.21571

    Article  Google Scholar 

  25. De Bonis A, D’Angelo M, Guarino V, Massa S, Saiedi Anaraki F, Genito B, Morra V (2017) Unglazed pottery from the Masjed-i Jjom’e of Isfahan (Iran): technology and provenance. Archaeol Anthropol Sci 9:617–635

    Google Scholar 

  26. de Lapérouse JF (2020) Ceramic musealisation: how ceramics are conserved and the implications for research. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01139-6

  27. Derkowski A, Kuligiewicz A (2017) Rehydroxylation in smectites and other clay minerals observed in-situ with a modified thermogravimetric system. Appl Clay Sci 136:219–229

    Google Scholar 

  28. Di Febo R, Molera J, Pradell T, Vallcorba O, Melgarejo JC, Capelli C (2017) Thin-section petrography and SR-μXRD for the identification of micro-crystallites in the brown decorations of ceramic lead glazes. Eur J Mineral 29:861–870

    Google Scholar 

  29. Dias MI, Prudêncio MI (2017) Fingerprinting ceramic workshops in the Lusitania Roman world: an appraisal based on elemental characterization by instrumental neutron activation analysis. Archaeol Anthropol Sci 9:777–788

    Google Scholar 

  30. Eramo G (2020) Ceramic technology. How to recognise clay processing.Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01132-z

  31. Erdem A, Çilingiroglu A, Giakoumaki A, Castanys M, Kartsonaki E, Fotakis C, Anglos D (2008) Characterization of Iron Age pottery from eastern Turkey by laser-induced breakdown spectroscopy (LIBS). J Archaeol Sci 35:2486–2494

    Google Scholar 

  32. Fabbri B, Gualtieri S (1998) Glaze modifications caused by sulphuration phenomena. In: Peretto C, Giunchi C (eds) Proceedings of the XIII conference of the International Union of Prehistoric and Protohistoric Sciences. ABACO, Forlì, pp 653–660

    Google Scholar 

  33. Fabbri B, Gualtieri S (2013) Reasons of phosphorus pollution in archaeological pottery and its consequences: a reassessment. In: Adalslteinn M, Olandereds T (eds) Developments in archaeology research. Nov. Sci. Publ, New York, pp 41–66

    Google Scholar 

  34. Fabbri B, Gualtieri S, Lorenzi R (2013) Preliminary archaeometric study of the Neolithic pottery from the “Le Grottelline” site (Spinazzola, Italy). Archaeol Anthropol Sci 5:235–243

    Google Scholar 

  35. Fabbri B, Gualtieri S, Shoval S (2014) The presence of calcite in archaeological ceramics. J Eur Ceram Soc 34:1899–1911

    Google Scholar 

  36. Forte V, Medeghini L (2017) A preliminary study of ceramic pastes in the Copper Age pottery production of the Rome area. Archaeol Anthropol Sci 9:209–222

    Google Scholar 

  37. Franklin UM, Hancock RGV (1981) The influence of post-burial conditions on trace element composition of ancient sherds. Revue d’Archéométrie 3:111–119

    Google Scholar 

  38. Franklin UM, Vitali V (1985) The environmental stability of ceramics. Archaeometry 27:3–15

    Google Scholar 

  39. Freestone IC (1991) Technical examination of Neo-Assyrian glazed wall plaques. Iran 53:55–58

    Google Scholar 

  40. Freestone IC (2001) Post-depositional changes in archaeological ceramics and glasses. In: Brothwell DR, Pollard AM (eds) Handbook of Archaeological Science. John Wiley & Sons, Inc, Hoboken, pp 615–625

    Google Scholar 

  41. Freestone IC, Meeks ND, Middleton AP (1985) Retention of phosphate in buried ceramics: an electron microbeam approach. Archaeometry 27:161–177

    Google Scholar 

  42. Freestone IC, Middleton AP, Meeks ND (1994) Significance of phosphate in ceramic bodies: discussion of paper by Bollong et al. J Archaeol Sci 21:425–426

    Google Scholar 

  43. Freitas RM, Perilli TAG, Ladeir ACQ (2013) Oxidative precipitation of manganese from acid mine drainage by potassium permanganate. J Chem. https://doi.org/10.1155/2013/287257

  44. Galli A, Sibilia M, Martini M (2020) Ceramic chronology by luminescence dating. How and when it is possible to date ceramic artefacts. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01140-z

  45. Garrels RM (1960) Mineral equilibria at low temperature and pressure. Harper and Row, New York

    Google Scholar 

  46. Giannossa LC, Mininni RM, Laviano R, Mastrorocco F, Caggiani MC, Mangone A (2016) An archaeometric approach to gain knowledge on technology and provenance of Apulian red-figured pottery from Taranto. Archaeol Anthropol Sci 9:1125–1135

    Google Scholar 

  47. Giannossa LC, Caggiani MC, Laviano R, Acquafredda P, Rotili M, Mangone A (2017) Synergic analytical strategy to follow the technological evolution of Campanian medieval glazed pottery. Archaeol Anthropol Sci 9:1137–1151

    Google Scholar 

  48. Gliozzo E (2020a) Ceramics investigation, Research questions and sampling criteria. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01128-9

  49. Gliozzo E (2020b) Ceramic technology. How to reconstruct the firing process. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01133-y

  50. Gliozzo E, D’Aco D, Memmi Turbanti I, Galli A, Martini M, Sibilia E (2009) Common ware production at Thamusida: dating and characterisation of Roman and Islamic pottery. Archaeol Anthropol Sci 1:77–85

    Google Scholar 

  51. Gliozzo E, Leone D, Origlia F, Memmi Turbanti I, Volpe G (2010) Archaeometric characterisation of coarse and painted fine ware from Posta Crusta (Foggia, Italy): technology and provenance. Archaeol Anthropol Sci 2:175–189

    Google Scholar 

  52. Gliozzo E, Goffredo R, Totten DM (2019) Painted and common wares from Salapia (Cerignola, Italy): archaeometric data from fourth to eighth cent. AD samples from the Apulian coast. Archaeol Anthropol Sci 11:2659–2681

    Google Scholar 

  53. Golitko M, Dudgeon JV, Neff H, Terrell JE (2012) Identification of post-depositional chemical alteration from the north coast of Papua New Guinea (Sandua Province) by time-of-flight-laser ablation-induced coupled plasma-mass spectrometry (TOF-ICP-MS). Archaeometry 54:80–100

    Google Scholar 

  54. Grifa C, De Bonis A, Langella A, Mercurio M, Soricelli G, Morra V (2013) A Late Roman ceramic production from Pompeii. J Archaeol Sci 40:810–826

    Google Scholar 

  55. Gualtieri S (2020) Ceramic raw materials. How to establish the technological suitability of a raw material. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01135-w

  56. Hall C, Hamilton A, Wilson MA (2013) The influence of temperature on rehydroxylation [RHX] kinetics in archaeological pottery. J Archaeol Sci 40:305–312

    Google Scholar 

  57. Heimann RB, Maggetti M (1981) Experiments on simulated burial of calcareous terra sigillata: mineralogical changes: preliminary results. In: Hughes MJ (ed), Scientific studies in ancient ceramics, British Museum Occasional Paper 19, 163–177

  58. Hein H, Kilikoglou V (2020) Ceramic raw materials. How to recognize them and locate the supply basins. Chemistry Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01129-8

  59. Hein A, Tsolakidou A, Mommsen H (2002) Mycenaean pottery from the Argolid and Achaia: a mineralogical approach where chemistry leaves unanswered questions. Archaeometry 44:177–186

    Google Scholar 

  60. Hem JD, Lind CJ (1983) Nonequilibrium models for predicting forms of precipitated manganese oxides. Geochim Cosmochim Acta 47:2037–2046

    Google Scholar 

  61. Henderson J, Ma H, Cui J, Ma R, Xiao H, (2020). Isotopic investigations of Chinese ceramics. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01138-7

  62. Inanes JG, Speakman RJ, Buxeda i Garrigós J, Glascock MD (2008) Chemical characterization of majolica from 14th-18th century production centers on the Iberian Peninsula: a preliminary neutron activation study. J Archaeol Sci 35:425–440

    Google Scholar 

  63. Ionescu C, Hoeck V (2020) Ceramic technology. How to investigate surface finishing. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01144-9

  64. Janz L, Feathers JK, Burr GS (2015) Dating surface assemblages using pottery and eggshell: assessing radiocarbon and luminescence techniques in Northeast Asia. J Archaeol Sci 57:119–129

    Google Scholar 

  65. Kibaroglu M, Satıra M, Kastl G (2009) Petrographic and geochemical analysis on the provenance of the Middle Bronze and Late Bronze/Early Iron Age ceramics from Didi Gora and Udabno I, Eastern Georgia. J Archaeol Sci 36:2463–2474

    Google Scholar 

  66. Kinniburgh DG, Cooper DM (2009) Creating graphical output with PHREEQC, available at http://www.phreeplot.org. Accessed 2011

  67. Koestler RJ, Santoro ED, Ransick L, Brill RH, Merrill L (1987) Preliminary scanning electron microscopy study of microbiologically induced deterioration of high-alkali low-lime glass. In: GC Llewellyn, CE O’Rear (eds), PanAmerican Biodeterioration Society. Meeting (1st: 1986: Washington, D.C.) Bio-deterioration Research 1. Plenum Publishing Corporation, pp. 95-307

  68. Krumbein WC, Garrels RM (1952) Origin and classification of chemical sediments in terms of pH and oxidation–reduction potentials. J Geol 60:1–33

    Google Scholar 

  69. Lemoine C, Picon M (1982) La fixation du phosphore par les céramiques lors de leur enfouissement et ses incidences analytiques. Revue d’Archéométrie 6:101–112

    Google Scholar 

  70. Lemoine C, Meille E, Poupet P, Barrandon JN, Bordeire B (1981) Etude de quelques altérations de composition chimique de céramique en milieu marin et terrestre. Revue d’Archéométrie 5:349–353

    Google Scholar 

  71. Lombardo T, Gentaz L, Verney-Carron A, Chabas A, Loisel C, Neff D, Leroy E (2013) Characterisation of complex alteration layers in medieval glasses. Corros Sci 72:10–19

    Google Scholar 

  72. Madrid i Fernández M, Sinner AG (2019) Analysing technical choices: improving the archaeological classification of Late Republican Black Gloss pottery in north-eastern Hispania consumption centres. Archaeol Anthropol Sci 11:3155–3186

    Google Scholar 

  73. Maggetti M (1982) Phase analysis and its significance for technology and origin. In: Olin JS, Franklin AD (eds) Archaeological ceramics. Smithsonian Institution Press, Washington, pp 121–133

    Google Scholar 

  74. Maggetti M, Westley H, Olin JS (1984) Provenance and technical studies of Mexican majolica using elemental and phase analysis. In: Lambert JB (ed) Archaeological Chemistry III, 151–91, Advances in Chemistry Series 205. American Chemical Society, Washington, pp 151–191

    Google Scholar 

  75. Maritan L (2019) Archaeo-ceramic 2.0: investigating ancient ceramics using modern technological approaches. Archaeol Anthropol Sci 11:5085–5093

    Google Scholar 

  76. Maritan L, Mazzoli C (2004) Phosphates in archaeological finds: implications for environmental conditions of burial. Archaeometry 46:673–683

    Google Scholar 

  77. Maritan L, Angelini I, Artioli G, Mazzoli C, Saracino M (2007) Analisi dei processi post-deposizionali in ceramiche: il caso di Pontecchio Polesine, Frattesina e Adria. Padusa 43:209–222

    Google Scholar 

  78. Maritan L, Angelini I, Artioli G, Mazzoli C, Sarracino M (2009) Secondary phosphates in ceramic materials from Frattesina (Rovigo, north-eastern Italy). J Cult Herit 10:144–151

    Google Scholar 

  79. Maritan L, Tourtet F, Meneghin G, Mazzoli C, Hausleiter A (2017) Technological transfer? Comparative analysis of the 2nd-3rd/4th century CE ‘Late Roman’ pottery from Tayma’, Saudi Arabia, and Petra, Jordan. J Archaeol Sci Rep 12:712–725

    Google Scholar 

  80. Maritan L, Casas L, Crespi A, Gravagna E, Rius J, Vallcorba O, Usai D (2018) Synchrotron tts-μXRD identification of secondary phases in ancient ceramics. Herit Sci 6:74. https://doi.org/10.1186/s40494-018-0240-z

    Article  Google Scholar 

  81. Maritan L, Zamparo L, Mazzoli C, Bonetto J (2019) Punic black-gloss ware: a history of importation and imitation from Carthage. J Archaeol Sci Rep 23:1–11

    Google Scholar 

  82. Maritan L, Nodari L, Olivieri L, Vidale M (2020) Shades of black: production technology of the black slip ware from Barikot, north-western Pakistan. J Cult Herit. https://doi.org/10.1016/j.culher.2019.10.002

  83. Marzec E, Kiriatzi E, Müller NS, Hein A (2019) An integrated typological, technological and provenance investigation of Late Hellenistic colour-coated pottery from Nea Paphos, Cyprus. Archaeol Anthropol Sci 11:4103–4122

    Google Scholar 

  84. Mentesana R, Kilikoglou V, Todaro S, Day PM (2019) Reconstructing change in firing technology during the Final Neolithic–Early Bronze Age transition in Phaistos, Crete. Just the tip of the iceberg? Archaeol Anthropol Sci 11:871–894

    Google Scholar 

  85. Mommsen H (2004) Short note: provenancing of pottery: the need for an integrated approach? Archaeometry 46:267–271

    Google Scholar 

  86. Montana G (2020) Ceramic raw materials. How to recognize them and locate the supply basins. Mineralogy, Petrography. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01130-1

  87. Montana G, Randazzo L, Castiglia A, La Russa MF, La Rocca R, Bellomo S (2014) Different methods for soluble salt removal tested on late-Roman cooking ware from a submarine excavation at the island of Pantelleria (Sicily, Italy). J Cult Herit 15:403–413

    Google Scholar 

  88. Noll W (1978) Mineralogie und Technik der bemalten Keramiken Altägyptens. Neues Jb Mineral Abh 133:227–290

    Google Scholar 

  89. O’Malley JM, Kuzmin YV, Burr GS, Donahue DJ, Jull AJT (1999) Direct radiocarbon accelerator mass spectrometric dating of the earliest pottery from the Russian Far East and Transbaikal. Revue d’Archéométrie:19–24

  90. Owen JV, Day TE (1998) Assessing and correcting the effects of the chemical weathering of potsherds: a case study using soft-paste porcelain wasters from the Longton Hall (Staffordshire) factory site. Geoarchaeology 13:265–286

    Google Scholar 

  91. Owen JV, Hanley JJ, Petrus JA (2019) Phosphatic alteration of lead-rich glazes during two centuries of burial: Bartlam, Bonnin & Morris, and Chelsea porcelain. Archaeol Anthropol Sci 11:6551–6567. https://doi.org/10.1007/s12520-019-00922-4

    Article  Google Scholar 

  92. Papachristodoulou C, Gravani K, Oikonomou A, Ioannides K (2010) On the provenance and manufacture of red-slipped fine ware from ancient Cassope (NW Greece): evidence by X-ray analytical methods. J Archaeol Sci 37:2146–2154

    Google Scholar 

  93. Papageorgiou I (2020) Ceramic investigation. How to perform statistical analyses. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01142-x

  94. Parkhurst DL (1997) Geochemical mole-balance modelling with uncertain data. Water Resour Res 33:1957–1970

    Google Scholar 

  95. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) - a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol Surv Water-Resour Investig Rep 99-4259:1–312

    Google Scholar 

  96. Picon M (1985) Un exemple de pollution aux dimensions kilométriques: la fixation du baryum par les céramiques. Revue d’Archéométrie 9:27–29

    Google Scholar 

  97. Picon M (1991) Quelques observations complémentaires sur les altérations de composition des céramiques au cours du temps: cas de quelques alcalins et alcalino-terreux. Revue d’Archéométrie 15:117–122

    Google Scholar 

  98. Pincé P, Braekmans D, Abdali N, De Pauw E, Amelirad S, Vandenabeele P (2019) Development of ceramic production in the Kur River Basin (Fars, Iran) during the Neolithic. A compositional and technological approach using X-ray fluorescence spectroscopy and thin section petrography. Archaeol Anthropol Sci 11:1241–1258

    Google Scholar 

  99. Pradell T, Molera J (2020) Ceramic technology. How to characterise ceramic glazes. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01136-9

  100. Pradell T, Vendrell-Saz M, Krumbein W, Picon M (1996) Altérations de céramiques en millieu marin: les amphores de l’épave romaine de la Madrague de Giens (Var). Revue d’Archéométrie 20:47–56

    Google Scholar 

  101. Rathossi C, Pontikes Y, Tsolis-Katagas P (2010) Mineralogical differences between ancient sherds and experimental ceramics: indices for firing conditions and post-burial alteration. Bull Geol Soc Greece 43:856–865

    Google Scholar 

  102. Retallack GJ (1990) Soils of the past. An Introduction to paleopedology. Springer

  103. Salinas E, Pradell T, Molera J (2019a) Glaze production at an early Islamic workshop in al-Andalus. Archaeol Anthropol Sci 11:2201–2213

    Google Scholar 

  104. Salinas E, Pradell T, Tite M (2019b) Tracing the tin-opacified yellow glazed ceramics in the western Islamic world: the findings at Madīnat al-Zahrā. Archaeol Anthropol Sci 11:777–787

    Google Scholar 

  105. Schleicher L, Miller W, Watkins-Kenney S, Carnes-McNaughton L, Wilde-Ramsing M (2008) Non-destructive chemical characterization of ceramic sherds from shipwreck 31CR314 and Brunswick Town, North Carolina. J Archaeol Sci 35:2824–2838

    Google Scholar 

  106. Schwedt A, Mommsen H, Zacharias N (2004) Post-depositional elemental alterations in pottery: neutron activation analyses of surface and core samples. Archaeometry 46:85–101

    Google Scholar 

  107. Schwedt A, Mommsen H, Zacharias N, Buxeda i Garrigós J (2006) Analcime crystallization and compositional profile-comparing approaches to detect post-depositional alteration in archaeological pottery. Archaeometry 48:237–251

    Google Scholar 

  108. Sciau P, Sanchez C, Gliozzo E (2020) Ceramic technology. How to characterise terra sigillata ware. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01137-8

  109. Secco M, Maritan L, Mazzoli C, Lampronti GI, Zorzi F, Nodari L, Russo U, Mattioli SP (2011) Alteration processes of pottery in lagoon-like environments. Archaeometry 53:809–829

    Google Scholar 

  110. Spataro M, Mommsen H, Villing A (2019) Making pottery in the Nile Delta: ceramic provenance and technology at Naukratis, 6th–3rd centuries BC. Archaeol Anthropol Sci 11:1059–1087

    Google Scholar 

  111. Stilborg O (2001) Temper for the sake of coherence: analyses of bone- and chaff-tempered ceramics from Iron Age Scandinavia. Eur J Archaeol 4:398–404

    Google Scholar 

  112. Takeno N (2005) Atlas of Eh. pH diagrams – intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science Technology. Geological Survey of Japan. Open File Report N. 419. National Institute of Advanced Industrial Science and Technology Research Centre for Deep Geological Environments

  113. Tenconi M, Maritan L, Donadel V, Angelini A, Leonardi G, Mazzoli C (2017) Evolution of the ceramic production at the Alpine site of Castel de Pedena: technology and innovation between the Recent Bronze Age and the early Iron Age. Archaeol Anthropol Sci 9:965–984

    Google Scholar 

  114. Thér R (2020) Ceramic technology. How to reconstruct and describe pottery-forming practices. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01131-0

  115. Vindrola-Padrós B, Moulding D, Astaloş C, Virag C, Sommer U (2019) Working with broken agents: exploring computational 2D morphometrics T for studying the (post)depositional history of potsherds. J Archaeol Sci 104:19–33

    Google Scholar 

  116. Visconti F, De Paz JM, Rubio JL (2010) Calcite and gypsum solubility products in water-saturated salt-affected soil samples at 25°C and at least up to 14 dS m−1. Eur J Soil Sci 61:255–270

    Google Scholar 

  117. Vitali V, Franklin UM, Hancock RGV (1984) La stabilité des céramiques par rapport à l’environnement. Revue d’Archéométrie 8:41–44

    Google Scholar 

  118. Volpe G (1998) San Giusto. La villa, le ecclesiae. Primi risultati dagli scavi nel sito rurale di San Giusto (Lucera): 1995-1997, Bari: Edipuglia

  119. Walter V, Besnus Y (1989) Un exemple de pollution en phosphore et en manganèse de céramiques anciennes. Revue d’Archéométrie 13:55–64

    Google Scholar 

  120. Whitbread IK (1989) A proposal for the systematic description of thin sections towards the study of ancient ceramic technology. In: Maniatis Y (ed) Proceedings of the 25th International Symposium of Archaeometry. Elsevier, Amsterdam, pp 127–138

    Google Scholar 

  121. Whitbread IK (1995) Greek transport of amphorae - a petrological and archaeological study. British School at Athens, Fitch laboratory occasional paper, 4

  122. Wilson MA, Clelland S, Carter MS, Ince C, Hall C, Hamilton A, Batt CM (2014) Rehydroxylation of fired-clay ceramics: factors affecting early-stage mass gain in dating experiments. Archaeometry 56:689–702

    Google Scholar 

  123. Yoshida K, Ohmichi J, Kinose M, Iijima H, Oono A, Abe N, Miyazaki Y, Matsuzaki H (2004) The application of 14C dating to potsherds of the Jomon period. Nucl Inst Methods Phys Res B 223-224:716–722

    Google Scholar 

  124. Zacharias N, Buxeda i Garrigós J, Mommsen H, Schwedt A, Kilikoglou V (2005) Implications of burial alterations on luminescence dating of archaeological ceramics. J Archaeol Sci 32:49–57

    Google Scholar 

  125. Zacharias N, Schwedt A, Buxeda i Garrigós J, Michael CT, Mommsen H, Kilikoglou K (2007) A contribution to the study of post-depositional alterations of pottery using TL dating analysis. J Archaeol Sci 34:1804–1809

    Google Scholar 

  126. Živković E, Power T, Georgakopoulou M, Cristobal Carvajal López J (2019) Defining new technological traditions of late Islamic Arabia: a view on Bahlā Ware from al-Ain (UAE) and the lead-barium glaze production. Archaeol Anthropol Sci 11:4697–4709

    Google Scholar 

  127. Zubin Ferri T, Rončević S, Lipovac Vrkljan G, Konestra A (2019) Post-depositional alterations of terrestrial and marine finds of Roman ceramics from Crikvenica production centre (NE Adriatic, Croatia): a contribution towards chemometric classification. J Cult Herit 43:12–25. https://doi.org/10.1016/j.culher.2019.10.005

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank two anonymous reviewers and the editor of this Topical Collection, Elisabetta Gliozzo, for their suggestions and productive discussion. She would also like to thank Gabriel Walton who revised the English text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lara Maritan.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a Topical Collection on Ceramics: Research questions and answers

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maritan, L. Ceramic abandonment. How to recognise post-depositional transformations. Archaeol Anthropol Sci 12, 199 (2020). https://doi.org/10.1007/s12520-020-01141-y

Download citation

Keywords

  • Post-depositional transformation
  • Secondary phases
  • Mechanisms of precipitation
  • Dissolution
  • Chemical leaching, enrichment