Pen management and livestock activities based on phytoliths, dung spherulites, and minerals from Cova Gran de Santa Linya (Southeastern pre-Pyrenees)

Abstract

The archaeological evidence from Cova Gran de Santa Linya suggests that during the Late Neolithic and Early Bronze Age, the site was used as a livestock enclosure where the accumulated excrements were burned, generating a sequence known by the term fumier. Here we present the results of an integrated study of silica phytoliths, dung spherulites, and mineral composition of sedimentary matrix from the remaining Holocene sequence. The use of fire to sanitize the space had important consequences for the preservation of dung spherulites and the accumulation of phytoliths. Phytolith assemblages indicate that the animals enclosed in the cave were mostly sheep that exploited the pastures nearby the site during the year. In this sense, the results from our modern plant reference collection challenge the assumption that grass inflorescence phytolith can be used as a seasonality indicator.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acovitsioti-hameau A, Brochier JE, Hameau P (1999) Temoignages et marqueurs du pastoralisme actuel en grece: une ethnographie des gestes et des restes et les applications archeologiques correlees. Ethnologhia 6–7:93–135

    Google Scholar 

  2. Akeret Ö, Jacomet S (1997) Analysis of plant macrofossils in goat/sheep faeces from the Neolithic lake shore settlement of Horgen Scheller - An indication of prehistoric transhumance? Veg Hist Archaeobotany 6:235–239. https://doi.org/10.1007/BF01370444

    Article  Google Scholar 

  3. Albert RM (2003) Quantitative phytolith study of hearths from the Natufian and Middle Palaeolithic levels of Hayonim Cave (Galilee, Israel). J Archaeol Sci 30:461–480. https://doi.org/10.1006/jasc.2002.0854

    Article  Google Scholar 

  4. Albert RM, Bamford MK (2012) Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains. J Hum Evol 63:342–350. https://doi.org/10.1016/j.jhevol.2011.05.010

    Article  Google Scholar 

  5. Albert RM, Marean CW (2012) The exploitation of plant resources by early Homo sapiens: the phytolith pecord from pinnacle point 13B Cave, South Africa. Geoarchaeology An Int J 27:363–384

    Article  Google Scholar 

  6. Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun Caves using a quantitative approach. In: Meunier JD, Colin F (eds) Phytoliths: application in Earth Sciences and Human History. A. A. Balkema Publishers, Lisse, pp 251–266

    Google Scholar 

  7. Albert R-M, Lavi O, Estroff L et al (1999) Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian period: a study of the aediments and phytoliths. J Archaeol Sci 26:1249–1260

    Article  Google Scholar 

  8. Albert R-M, Weiner L, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27:931–947

    Article  Google Scholar 

  9. Albert RM, Shahack-Gross R, Cabanes D et al (2008) Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and archaeological significance. J Archaeol Sci 35:57–75. https://doi.org/10.1016/j.jas.2007.02.015

    Article  Google Scholar 

  10. Albert RM, Ruíz JA, Sans A (2016) PhytCore ODB: a new tool to improve efficiency in the management and exchange of information on phytoliths. J Archaeol Sci 68:98–105. https://doi.org/10.1016/j.jas.2015.10.014

    Article  Google Scholar 

  11. Allué E, Euba I (2005) Los datos antracológicos de la secuencia Neolítica de El Mirador (Atapuerca, Burgos): un estudio sobre el medio vegetal y la explotación de las especies vegetales leñosas. In: Pérez MSH, Díaz JAS (eds) IV Congreso del Neolítico Peninsular. MARQ. Museo Arqueològic de Alacant, Alacant, pp 345–352

    Google Scholar 

  12. Allué E, Vernet JL, Cebrià A (2009) Holocene vegetational landscapes of NE Iberia: charcoal analysis from Cova de la Guineu, Barcelona, Spain. Holocene 19:765–773. https://doi.org/10.1177/0959683609105301

    Article  Google Scholar 

  13. Allué E, Martínez-Moreno J, Roy M et al (2018) Montane pine forests in NE Iberia during MIS 3 and MIS 2. A study based on new anthracological evidence from Cova Gran (Santa Linya, Iberian Pre-Pyrenees). Rev Palaeobot Palynol 258:62–72. https://doi.org/10.1016/j.revpalbo.2018.06.012

    Article  Google Scholar 

  14. Alonso-Eguíluz M (2012) Estudio de los fitolitos en conjuntos de la Prehistoria reciente en la Sierra de Cantabria. El caso de los niveles de redil de San Cristóbal (Laguardia , Álava). Estud Cuaternario 2012:1–14

    Google Scholar 

  15. Alonso-Eguíluz M, Fernández-Eraso J, Albert RM (2016) The first herders in the upper Ebro basin at Los Husos II (Álava, Spain): microarchaeology applied to fumier deposits. Veg Hist Archaeobotany. https://doi.org/10.1007/s00334-016-0590-y

  16. Angelucci DE, Boschian G, Fontanals M et al (2009) Shepherds and karst: the use of caves and rock-shelters in the Mediterranean region during the Neolithic. Word Archaeol 41:191–214

    Article  Google Scholar 

  17. Argant J, Heinz C, Brochier JL (1991) Pollens, charbons de bois et sediments: l’action humaine et la végétation, le cas de la grotte d’Antonnaire (Montmaur-en-Diois, Drôme) TT - Pollen, charcoal, and sediments: human action and vegetation, the case of the cave of Antonnaire Montmaur-en-Dioi. Rev d’archéométrie 15:29–40

    Article  Google Scholar 

  18. Badal E (1999) El potencial pecuario de la vegetación mediterránea: las cuevas Redil. In: Actes del II Congrés del Neolític a la Península Ibèrica. Universitat de València, València, pp 69–76

    Google Scholar 

  19. Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley Hordeum vulgare and H. spontaneum Gramineae. Am J Bot 86:1615. https://doi.org/10.2307/2656798

    Article  Google Scholar 

  20. Ball TB, Davis AL, Evett RR et al (2016) Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics. J Archaeol Sci 68:106–111. https://doi.org/10.1016/j.jas.2015.03.023

    Article  Google Scholar 

  21. Benito-Calvo A, Martínez-Moreno J, Jordá Pardo JF et al (2009) Sedimentological and archaeological fabrics in Palaeolithic levels of the South-Eastern Pyrenees: Cova Gran and Roca dels Bous Sites (Lleida, Spain). J Archaeol Sci 36:2566–2577. https://doi.org/10.1016/j.jas.2009.07.012

    Article  Google Scholar 

  22. Benito-Calvo A, Martínez-Moreno J, Mora R et al (2011) Trampling experiments at Cova Gran de Santa Linya, Pre-Pyrenees, Spain: their relevance for archaeological fabrics of the Upper-Middle Paleolithic assemblages. J Archaeol Sci 38:3652–3661

    Article  Google Scholar 

  23. Berna F, Goldberg P (2007) Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Isr J Earth Sci 56:107–121. https://doi.org/10.1560/IJES.56.2-4.107

    Article  Google Scholar 

  24. Berna F, Behar A, Shahack-Gross R et al (2007) Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). J Archaeol Sci 34:358–373

    Article  Google Scholar 

  25. Bogaard A (2012) Middening and manuring in Neolithic: Europe: issues of plausibility, intensity and archaeological method. In: Jones R (ed) Manure matters. Historical, Archaeological and Ethnografic Perspectives. Ashgate Publising, Franham, pp 25–39

  26. Boschian G, Miracle PT (2007) Shepherds and caves in the Karst of Istria (Croatia). Atti della Soc Toscana di Sci Nat Memorie, Ser A 112:173–181

    Google Scholar 

  27. Brochier JE (1991) Géoarchéologie du monde agropastoral. In: Pour une Archéologie Agraire. À la croisée des sciences de l’homme et de la nature. Armand Colin Éditeur, Paris, pp 303–322

    Google Scholar 

  28. Brochier JE (2002) Les sédiments anthropiques. Méthodes d’étude et perspectives. In: Miskovsky J (ed) Géologie de la Préhistoire: méthodes, techniques, ap- plications. Geopré, Paris, pp 453–477

    Google Scholar 

  29. Brochier JÉ (2005) Des hommes et des bêtes : une approche naturaliste de l’histoire et des pratiques de l’élevage. In: Guilaine J (ed) Populations néolithiques et environnements. Collection, Errance, pp 137–152

    Google Scholar 

  30. Brochier JE, Villa P, Giacomarra M, Tagliacozzo A (1992) Shepherds and sediments: geo-ethnoarchaeology of pastoral sites. J Anthropol Archaeol 11:47–102. https://doi.org/10.1016/0278-4165(92)90010-9

    Article  Google Scholar 

  31. Cabanes D, Shahack-Gross R (2015) Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology. PLoS One 10:e0125532. https://doi.org/10.1371/journal.pone.0125532

    Article  Google Scholar 

  32. Cabanes D, Allué E, Vallverdú J, et al. (2002) Hearth structure and function at level J ( 50kyr , bp ) from Abric Romaní ( Capellades , Spain ): phytolith , charcoal , bones and stone-tools. 98–106

  33. Cabanes D, Burjachs F, Expósito I et al (2009) Formation processes through archaeobotanical remains: the case of the Bronze Age levels in El Mirador cave, Sierra de Atapuerca, Spain. Quat Int 193:160–173. https://doi.org/10.1016/j.quaint.2007.08.002

    Article  Google Scholar 

  34. Cabanes D, Mallol C, Expósito I, Baena J (2010) Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). J Archaeol Sci 37:2947–2957. https://doi.org/10.1016/j.jas.2010.07.010

    Article  Google Scholar 

  35. Cabanes D, Weiner L, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2480–2490

    Article  Google Scholar 

  36. Canti MG (1997) An investigation of microscopic calcareous spherulites from herbivore dung. J Archaeol Sci 24:219–231. https://doi.org/10.1006/jasc.1996.0105

    Article  Google Scholar 

  37. Canti MG (1999) The production and preservation of faecal spherulites: animals, environment and taphonomy. J Archaeol Sci 26:251–258. doi:10.1006/jasc.1998.0322

  38. Canti MG, Nicosia C (2018) Formation, morphology and interpretation of darkened faecal spherulites. J Archaeol Sci 89:32–45. https://doi.org/10.1016/j.jas.2017.11.004

    Article  Google Scholar 

  39. Charles M, Halstead P, Jones G (eds) (1998) Fodder: archaeological, historical and ethnographic studies (Vol. 1). Oxbow Books Limited

  40. Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911

    Article  Google Scholar 

  41. Conesa J, Pedrol J (2014) Mapa de vegetació de Catalunya 1:50.000. Os de Balaguer 327 (32-13)

  42. Delhon C, Martin L, Argant J, Thiébault S (2008) Shepherds and plants in the Alps: multi-proxy archaeobotanical analysis of neolithic dung from “La Grande Rivoire” (Isère, France). J Archaeol Sci 35:2937–2952. https://doi.org/10.1016/j.jas.2008.06.007

    Article  Google Scholar 

  43. Dunseth ZC, Fuks D, Langgut D et al (2019) Archaeobotanical proxies and archaeological interpretation: a comparative study of phytoliths, pollen and seeds in dung pellets and refuse deposits at Early Islamic Shivta, Negev, Israel. Quat Sci Rev 211:166–185. https://doi.org/10.1016/j.quascirev.2019.03.010

    Article  Google Scholar 

  44. Esteban I, Albert RM, Eixea A et al (2015) Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada. Archaeol Anthropol Sci:4–10. https://doi.org/10.1007/s12520-015-0279-7

  45. Euba I, Allué E, Burjachs F (2016) Wood uses at El Mirador Cave (Atapuerca, Burgos) based on anthracology and dendrology. Quat Int 414:285–293. https://doi.org/10.1016/j.quaint.2015.08.084

    Article  Google Scholar 

  46. Expósito I, Burjachs F (2016) Taphonomic approach to the palynological record of burnt and unburnt samples from El Mirador Cave (Sierra de Atapuerca, Burgos, Spain). Quat Int 414:258–271. https://doi.org/10.1016/j.quaint.2016.01.051

    Article  Google Scholar 

  47. Friesem DE (2016) Geo-ethnoarchaeology in action. J Archaeol Sci 70:145–157. https://doi.org/10.1016/j.jas.2016.05.004

    Article  Google Scholar 

  48. García-Suárez A, Portillo M, Matthews W (2018) Early animal management strategies during the Neolithic of the Konya Plain Central Anatolia: integrating micromorphological and microfossil evidence. Environ Archaeol:1–19. https://doi.org/10.1080/14614103.2018.1497831

  49. Gur-Arieh S, Boaretto E, Maeir A, Shahack-Gross R (2012) Formation processes in Philistine hearths from Tell es-Safi/Gath (Israel): an experimental approach. J F Archaeol 37:121–131. https://doi.org/10.1179/0093469012Z.00000000011

    Article  Google Scholar 

  50. Gur-Arieh S, Mintz E, Boaretto E, Shahack-Gross R (2013) An ethnoarchaeological study of cooking installations in rural Uzbekistan: development of a new method for identification of fuel sources. J Archaeol Sci. https://doi.org/10.1016/j.jas.2013.06.001

  51. Gur-Arieh S, Shahack-Gross R, Maeir AM et al (2014) The taphonomy and preservation of wood and dung ashes found in archaeological cooking installations: case studies from Iron Age Israel. J Archaeol Sci 46:50–67. https://doi.org/10.1016/j.jas.2014.03.011

    Article  Google Scholar 

  52. Haas JN, Karg S, Rasmussen P (1996) Beech leaves and twigs used as winter fodder: examples from historic and prehistoric times. Environ Archaeol 1:81–86. https://doi.org/10.1179/146141096790605803

    Article  Google Scholar 

  53. Hejcman M, Hejcmanová P, Stejskalová M, Pavlů V (2014) Nutritive value of winter-collected annual twigs of main European woody species, mistletoe and ivy and its possible consequences for winter foddering of livestock in prehistory. Holocene 24:659–667. https://doi.org/10.1177/0959683614526904

    Article  Google Scholar 

  54. Ishida S, Parker AG, Kennet D, Hodson MJ (2003) Phytolith analysis from the archaeological site of Kush, Ras al-Khaimah, United Arab Emirates. Quat Res 59:310–321. https://doi.org/10.1016/S0033-5894(03)00043-7

    Article  Google Scholar 

  55. Jenkins E (2009) Phytolith taphonomy: a comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. J Archaeol Sci 36:2402–2407. https://doi.org/10.1016/j.jas.2009.06.028

    Article  Google Scholar 

  56. Kam M, El-Meccawi S, Degen AA (2012) Foraging behaviour and diet selection of free-ranging sheep and goats in the Negev Desert, Israel. J Agric Sci 150:379–387. https://doi.org/10.1017/S0021859611000955

    Article  Google Scholar 

  57. Karg S (1996) Winter- and spring-foddering of sheep/goat in the Bronze Age Site of Fiavè-Carera, Northern Italy. Environ Archaeol 1:87–94. https://doi.org/10.1179/env.1996.1.1.87

    Article  Google Scholar 

  58. Karkanas P (2006) Late Neolithic household activities in marginal areas: the micromorphological evidence from the Kouveleiki caves, Peloponnese, Greece. J Archaeol Sci 33:1628–1641. https://doi.org/10.1016/j.jas.2006.02.017

    Article  Google Scholar 

  59. Katz O, Cabanes D, Weiner S et al (2010) Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. J Archaeol Sci 37:1557–1563. https://doi.org/10.1016/j.jas.2010.01.016

    Article  Google Scholar 

  60. Lancelotti C, Madella M (2012) The ‘invisible’ product: developing markers for identifying dung in archaeological contexts. J Archaeol Sci 19:953–963

    Article  Google Scholar 

  61. Lancelotti C, Balbo AL, Madella M et al (2014) The missing crop: investigating the use of grasses at Els Trocs, a Neolithic cave site in the Pyrenees (1564 m asl). J Archaeol Sci 42:456–466. https://doi.org/10.1016/j.jas.2013.11.021

    Article  Google Scholar 

  62. Macphail RI, Courty M-A, Hather J et al (1997) The soil micromorphological evidence of domestic occupation and stabling activities. In: Maggi R (ed) Arene Candide: a functional and environmental assessment of the holocene sequence(Excavations Bernarbo’ Brea-Cardini 1940–50). Il Calamo, Roma, pp 53–88

    Google Scholar 

  63. Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83

    Article  Google Scholar 

  64. Martínez-Moreno J, Mora R, de la Torre I (2010) The Middle-to-upper Palaeolithic transition in Cova Gran (Catalunya, Spain) and the extinction of Neanderthals in the Iberian Peninsula. J Hum Evol 58:211–226. https://doi.org/10.1016/j.jhevol.2009.09.002

    Article  Google Scholar 

  65. Martínez-Moreno J, Mora R, de la Torre I, Benito-Calvo A (2012) The role of flakes in the early Upper Palaeolithic 497D assemblage of Cova Gran de Santa Linya (Southeastern Pre-Pyrenees, Spain). Flake not Bl role flake Prod onset Up Palaeolithic Eur:85–104

  66. Mora R, Benito-Calvo A, Martínez-Moreno J et al (2011) Chrono-stratigraphy of the Upper Pleistocene and Holocene archaeological sequence in Cova Gran (south-eastern Pre-Pyrenees, Iberian Peninsula). J Quat Sci 26:635–644. https://doi.org/10.1002/jqs.1486

    Article  Google Scholar 

  67. Mora R, Benito Calvo, Alfonso Martínez-Moreno J, de la Torre I, et al. (2014) A key sequence in the Western Mediterranean Prehistory: Cova Gran de Santa Linya (Pre-Pyrenees in Lleida). In: Sala Ramos R (ed) Pleistocene and Holocene hunter-gatherers in Iberia and the Gibraltar Strait: the current archaeological record. pp 162–166

  68. Mora R, Martínez-Moreno J, Roy Sunyer M et al (2018) Contextual, technological and chronometric data from Cova Gran: their contribution to discussion of the Middle-to-Upper Paleolithic transition in northeastern Iberia. Quat Int 474:30–43. https://doi.org/10.1016/j.quaint.2016.05.017

    Article  Google Scholar 

  69. Neumann K, Strömberg CAE, Ball T et al (2019) International Code for Phytolith Nomenclature (ICPN) 2.0. Ann Bot 124:189–199. https://doi.org/10.1093/aob/mcz064

    Article  Google Scholar 

  70. Parr JF, Lentfer C, Boyd WE (2001) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28:875–886

    Article  Google Scholar 

  71. Peña-Chocarro L, Peña LZ, Gazólaz JG et al (2005) The spread of agriculture in northern Iberia: new archaeobotanical data from El Mirón cave (Cantabria) and the open-air site of Los Cascajos (Navarra). Veg Hist Archaeobotany 14:268–278. https://doi.org/10.1007/s00334-005-0078-7

    Article  Google Scholar 

  72. Piperno DR (1988) Phytolith analysis. An archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  73. Piperno DR (2006) Phytoliths: A comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  74. Poduska KM, Regev L, Boaretto E et al (2011) Decoupling local disorder and optical effects in infrared spectra: differentiating between calcites with different origins. Adv Mater 23:550–554. https://doi.org/10.1002/adma.201003890

    Article  Google Scholar 

  75. Polo-Díaz A (2010) Rediles prehistóricos y uso del espacio en abrigos bajo roca en la Cuenca Alta del Ebro: geoarqueología y procesos de formación durante el Holoceno. Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV-EHU)

  76. Polo-Díaz A, Martínez-Moreno J, Benito-Calvo A, Mora R (2014) Prehistoric herding facilities: site formation processes and archaeological dynamics in Cova Gran de Santa Linya (Southeastern Prepyrenees, Iberia). J Archaeol Sci 41:784–800. https://doi.org/10.1016/j.jas.2013.09.013

    Article  Google Scholar 

  77. Polo-Díaz A, Alonso Eguíluz M, Ruiz M et al (2016a) Management of residues and natural resources at San Cristóbal rock-shelter: contribution to the characterisation of chalcolithic agropastoral groups in the Iberian Peninsula. Quat Int 414:202–225. https://doi.org/10.1016/j.quaint.2016.02.013

    Article  Google Scholar 

  78. Polo-Díaz A, Benito-Calvo A, Martínez-Moreno J, Mora Torcal R (2016b) Formation processes and stratigraphic integrity of the Middle-to-Upper Palaeolithic sequence at Cova Gran de Santa Linya (Southeastern Prepyrenees of Lleida, Iberian Peninsula). Quat Int 417:16–38. https://doi.org/10.1016/j.quaint.2015.10.113

    Article  Google Scholar 

  79. Portillo M, Albert RM (2011) Husbandry practices and livestock dung at the Numidian site of Althiburos (el Médéina, Kef Governorate, northern Tunisia): the phytolith and spherulite evidence. J Archaeol Sci 38:3224–3233. https://doi.org/10.1016/j.jas.2011.06.027

    Article  Google Scholar 

  80. Portillo M, Albert RM, Kadowaki S, Nishiaki Y (2010) Domestic activities at Early Neolithic Tell Seker al-Aheimar (Upper Khabu, Northeastern Syria) through phytoliths and spherulites studies. Des Hommes Des Plantes Exploit Du Milieu Gest Des Ressources Végétales La Préhistoire À Nos Jours 19–30

  81. Portillo M, Valenzuela S, Albert RM (2012) Domestic patterns in the Numidian site of Althiburos (northern Tunisia): the results from a combined study of animal bones, dung and plant remains. Quat Int 275:84–96. https://doi.org/10.1016/j.quaint.2012.01.024

    Article  Google Scholar 

  82. Portillo M, Kadowaki S, Nishiaki Y, Albert RM (2014) Early Neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): a comparison to ethnoarchaeological study of phytoliths and dung spherulites. J Archaeol Sci 42:107–118. https://doi.org/10.1016/j.jas.2013.10.038

    Article  Google Scholar 

  83. Portillo M, Ball TB, Wallace M et al (2019a) Advances in morphometrics in archaeobotany. Environ Archaeol:1–11. https://doi.org/10.1080/14614103.2019.1569351

  84. Portillo M, García-Suárez A, Klimowicz A et al (2019b) Animal penning and open area activity at Neolithic Çatalhöyük, Turkey. J Anthropol Archaeol 56:101106. https://doi.org/10.1016/j.jaa.2019.101106

    Article  Google Scholar 

  85. Power RC, Rosen AM, Nadel D (2014) The economic and ritual utilization of plants at the Raqefet Cave Natufian site: the evidence from phytoliths. J Anthropol Archaeol 33:49–65. https://doi.org/10.1016/j.jaa.2013.11.002

    Article  Google Scholar 

  86. Rapp G, Mulholland SC (1992) Phytolith systematics. Plenum Press, New York, Emerging Issues

    Google Scholar 

  87. Rasmussen P (1989) Leaf-foddering of Livestock in the Neolithic: Archaeobotanical Evidence from Weier, Switzerland. J Danish Archaeol 8:51–71. https://doi.org/10.1080/0108464X.1989.10590019

    Article  Google Scholar 

  88. Rasmussen P (1993) Analysis of goat/sheep faeces from Egolzwil 3, Switzerland: evidence for branch and twig foddering of livestock in the Neolithic. J Archaeol Sci 20:479–502

    Article  Google Scholar 

  89. Regev L, Poduska KM, Addadi L et al (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029

    Article  Google Scholar 

  90. Rivas-Martínez S (1983) Pisos bioclimáticos de España. Lazaroa 5:33–43

    Google Scholar 

  91. Rodríguez A, Allué E, Buxó R (2016) Agriculture and livestock economy among prehistoric herders based on plant macro-remains from El Mirador (Atapuerca, Burgos). Quat Int 414:272–284. https://doi.org/10.1016/j.quaint.2016.01.045

    Article  Google Scholar 

  92. Roy Sunyer M, Tarriño Vinagre A, Benito-Calvo A et al (2013) Aprovisionamiento de sílex en el Prepirineo oriental durante el Paleolítico superior antiguo: el nivel arqueológico 497C de Cova Gran (Santa Linya, Lleida). Trab Prehist 70:7–27. https://doi.org/10.3989/tp.2013.12100

    Article  Google Scholar 

  93. Schiegl S, Goldberg P, Bar-Yosef O, Weiner S (1996) Ash deposits in Hayonim and Kebara Caves, Israel: macroscopic, microscopic and mineralogical observations, and their archaeological implications. J Archaeol Sci 23:763–781. https://doi.org/10.1006/jasc.1996.0071

    Article  Google Scholar 

  94. Servei Meteorològic de Catalunya, 2018. Anuari de dades meteorològiques 2018.

  95. Shahack-Gross R (2011) Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. J Archaeol Sci 38:205–218. https://doi.org/10.1016/j.jas.2010.09.019

    Article  Google Scholar 

  96. Shahack-Gross R, Marshall F, Weiner S (2003) Geo-ethnoarchaeology of pastoral sites: the identification of livestock enclosures in abandoned Maasai Settlements. J Archaeol Sci 30:439–459. https://doi.org/10.1006/jasc.2002.0853

    Article  Google Scholar 

  97. Shahack-Gross R, Albert RM, Gilboa A et al (2005) Geoarchaeology in an urban context: the uses of space in a Phoenician monumental building at Tel Dor (Israel). J Archaeol Sci 32:1417–1431

    Article  Google Scholar 

  98. Shahack-Gross R, Boaretto E, Cabanes D et al (2014) Subsistence economy in the Negev Highlands: the Iron Age and the Byzantine/Early Islamic period. Levant 46:98–117. https://doi.org/10.1179/0075891413Z.00000000034

    Article  Google Scholar 

  99. Shillito L (2011) Taphonomic observations of archaeological wheat phytoliths from neolithic Çatalhöyük, Turkey, and the use of conjoined phytolith size as an indicator of water availability. Archaeometry 53:631–641. https://doi.org/10.1111/j.1475-4754.2010.00582.x

    Article  Google Scholar 

  100. Thiébault S (2001) Anthracoanalyse des établissements néolithiques de la région liguro-provençale. Bull la Société préhistorique française 399–409

  101. Thiébault S (2005) L’apport du fourrage d’arbre dans l’élevage depuis le Néolithique. Anthropozoologica 40:95–1087

  102. Tsartsidou G, Lev-Yadun S, Albert R-MR-M et al (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34:1262–1275. https://doi.org/10.1016/j.jas.2006.10.017

    Article  Google Scholar 

  103. Tsartsidou G, Lev-Yadun S, Efstratiou N, Weiner S (2009) Use of space in a Neolithic village in Greece (Makri): phytolith analysis and comparison of phytolith assemblages from an ethnographic setting in the same area. J Archaeol Sci 36:2342–2352. https://doi.org/10.1016/j.jas.2009.06.017

    Article  Google Scholar 

  104. Twiss PC (1992) Predicted World Distribution of C3 and C4 grass phytoliths. In: Rapp JG, Mulholland SC (eds) Phytolith systematics. Emerging issues. Plenum Press, London/New York, pp 113–128

    Google Scholar 

  105. Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am Proc 33:109–115

    Article  Google Scholar 

  106. Vergès J-M (2011) La combustión del estiércol: aproximación experimetal a la quema en montón de los residuos de redil. In: Morgado A, Baena J, García-González D (eds) La investigación experimental aplicada a la Arqueología. Editorial Universidad de Granada, Granada, pp 325–330

    Google Scholar 

  107. Vergès JM, Morales JI (2016) Polished walls as indirect evidence of both the use of caves and stone enclosures as livestock folds and dung management strategies: ethnological and archaeological examples. Quat Int 414:330–336. https://doi.org/10.1016/j.quaint.2016.01.049

    Article  Google Scholar 

  108. Vergès JM, Allué E, Fontanals M et al (2016a) El Mirador cave (Sierra de Atapuerca, Burgos, Spain): a whole perspective. Quat Int 414:236–243. https://doi.org/10.1016/j.quaint.2016.01.044

    Article  Google Scholar 

  109. Vergès JM, Burguet-Coca A, Allué E et al (2016b) The Mas del Pepet experimental programme for the study of prehistoric livestock practices: preliminary data from dung burning. Quat Int 414:304–315. https://doi.org/10.1016/j.quaint.2016.01.032

    Article  Google Scholar 

  110. Wang X, Jiang H, Shang X et al (2014) Comparison of dry ashing and wet oxidation methods for recovering articulated husk phytoliths of foxtail millet and common millet from archaeological soil. J Archaeol Sci 45:234–239. https://doi.org/10.1016/j.jas.2014.03.001

    Article  Google Scholar 

  111. Weiner S (2010) Microarchaeology. Beyond the visible archaeological record. Cambridge University Press, New York

    Google Scholar 

  112. Weiner S, Golberg P, Bar-Yosef O (1993) Bone preservation in Kebara Cave, Israel using pn-site Fourier transform infrared spectrometry. J Archaeol Sci 20:613–627

    Article  Google Scholar 

Download references

Acknowledgments

This research was developed within the framework of various projects from the Spanish Government MINECO/FEDER (CGL2015-65387-C3-1-P). Cova Gran de Santa Linya is part of the project Human settlement during the Upper Pleistocene and Holocene in the South-eastern Pyrenees (HAR2016-75124-P and PID2019-104843GB-I00) and Generalitat de Catalunya (SGR2017-1357 and SGR2017-836). Fieldwork has been supported by the Servei d’Arquelogía- Generalitat de Catalunya. We thank the kind permission of the Societat de Munts de Santa Linya. Aitor Burguet-Coca’s research is funded by the Caja viva Fundación Caja Rural Burgos-Fundacion Atapuerca. Thanks to Boris Muñoz Coca and Laura Pinto Font for the help in the collection of the control samples. We are also grateful to three anonymous reviewers for providing helpful comments on the earlier version of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aitor Burguet-Coca.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Phytolith Nomenclature following the Code for Phytolith Nomenclature system (Neumann et al. 2019) with plant classification (XLSX 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burguet-Coca, A., Polo-Díaz, A., Martínez-Moreno, J. et al. Pen management and livestock activities based on phytoliths, dung spherulites, and minerals from Cova Gran de Santa Linya (Southeastern pre-Pyrenees). Archaeol Anthropol Sci 12, 148 (2020). https://doi.org/10.1007/s12520-020-01101-6

Download citation

Keywords

  • Phytoliths
  • Dung spherulites
  • FTIR
  • Livestock
  • Late Prehistory
  • Seasonality
  • fumier