Short and close in time: overlapped occupation from the layer 56 of the Molare Rock shelter (Southern Italy)

Abstract

The Molare Rock shelter (S. Giovanni a Piro, Salerno, Italy) is a key site to carry out high-resolution chronological studies in the broader context of Italian Mousterian peopling dynamics. The stratigraphic sequence is to be referred to MIS 5 and is characterized by the presence of a number of thin anthropic levels (often consisting of largely undisturbed living floors) alternated with sterile layers of various thickness. Even if the excavated area covers only a part of the original site, macro-evidence of the spatial organization of the settlement (e.g. position of hearths, structures, etc.) is quite variable through the sequence. However, broader analyses are needed to better understand the archaeological record and to detect continuities or discontinuities related to survival or change of settlement dynamics and economic strategies through time. This paper concerns data from layer 56. This anthropic level is quite thin and was interposed between two thick layers of sterile clay. Its upper part, directly in contact with the overlying clay sediment, can be considered as a living floor. Since taphonomic studies indicated a good preservation state of the anthropic context, we combined lithic technology (implemented by RMU analysis) with the study of spatial distribution patterns of archaeological finds; such an approach allowed us to correlate inner variations of layer 56 with two different “occupational events”, probably separated by a very short chronological gap. The two occupations appear to be characterized by different patterns of space management and use which may either reflect punctuated settlement dynamics or be expression of a continuum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Arobba D, Boscato P, Boschian G, Falgueres C, Fasani L, Peretto C, Sala B, Thun Hohenstein U, Tozzi C (2004) Paleoenvironmental analysis. Coll Antropol 28:5–21

    Google Scholar 

  2. Arriaza MC, Organista E, Yravedra J, Santonja M, Baquedano E, Domínguez-Rodrigo M (2018) Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeol Anthropol Sci 1-13:3187–3199. https://doi.org/10.1007/s12520-018-0747-y

    Article  Google Scholar 

  3. Arribas A, Palmqvist P (1998) Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the Lower Pleistocene site at Venta Micena (Orce, Guadix-Baza, Granada, Spain). Geobios 31(3, supplément):3–47. https://doi.org/10.1016/S0016-6995(98)80056-9

    Article  Google Scholar 

  4. Aubry T, Bradley B, Almeida M, Walter B, Neves MJ, Pelegrin J, Lenoir M, Tiffagom M (2008) Solutrean laurel leaf production at Maîtreaux: an experimental approach guided by techno-economic analysis. World Archaeol 40:48–66. https://doi.org/10.1080/00438240701843538

    Article  Google Scholar 

  5. Aureli D, Ronchitelli A (2018) The Lower Tyrrhenian Versant: was it a techno-cultural area during the Middle Palaeolithic? Evolution of the lithic industries of the Riparo del Molare sequence in the frame of Neanderthal peopling dynamics in Italy. In: Borgia V, Cristiani E (eds) Palaeolithic Italy: advanced studies on early human adaptations in the Apennine peninsula. Sidestone Press, Leiden, pp 59–94

    Google Scholar 

  6. Auriemma R, Lo Presti V, Antonioli F, Ronchitelli A, Scicchitano G, Spampinato C, Anzidei M, Ferranti L, Monaco C, Mastronuzzi G, Agizza S (2014) Cave costiere di macine in Italia: nuove evidenze e ipotesi cronologica. In: Bonetto J, Camporeale S, Pizzo A (Eds.), Arqueología de la Construcción IV “Las canteras en el mundo antiguo: sistemas de explotación y procesos productivos”, Actas del congreso de Padova, 22–24 de noviembre de 2012, Anejos de AEspA LXIX:251–270

  7. Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. Chapman and Hall/CRC. 810 p

  8. Bailey GN (2007) Time perspectives, palimpsests and the archaeology of time. J Anthropol Archaeol 26(2):198–223. https://doi.org/10.1016/j.jaa.2006.08.002

    Article  Google Scholar 

  9. Bargalló A, Gabucio MJ, Rivals F (2016) Puzzling out a palimpsest: testing an interdisciplinary study in level O of Abric Romaní. Quat Int 417:51–65. https://doi.org/10.1016/j.quaint.2015.09.066

    Article  Google Scholar 

  10. Barton RNE, Bergman CA (1982) Hunters at Hengistbury: some evidence from experimental archaeology. World Archaeol 14:237–248

    Google Scholar 

  11. Bartram LE, Kroll EM, Bunn HT (1991) Variability in camp structure and bone food refuse patterning at Kua San hunter-gatherer camps. In: Kroll EM, Douglas Price T (eds) The interpretation of archaeological spatial patterning. Springer, New York-London, pp 77–148

    Google Scholar 

  12. Bataille G (2010) Recurrent occupations of the Late Middle Palaeolithic Station Kabazi II, Unit II, Level 8 (Crimea, Ukraine) – seasonal adaptation, procurement and processing of resources. Quartär 57:43–77

    Google Scholar 

  13. Baumler MF, Davis LB (2004) The role of small-sized debitage in aggregate lithic analysis. In: Hall CT, Larson ML (eds) Aggregate analysis in chipped stone. University of Utah Press, Salt Lake City, pp 45–64

    Google Scholar 

  14. Behm JA (1983) Flake concentrations: distinguishing between flintworking activity areas and secondary deposits. Lithic Technol 12:9–16. https://doi.org/10.1080/01977261.1983.11760608

    Article  Google Scholar 

  15. Belousova NE, Yu F, Slavinskiy VS (2018) Raw Material Unit Analysis as a method of studying the structure of cultural deposits and reconstruction of mobility and life support systems [Анализ сырьевых единиц как способ изучения структуры культурных отложений и реконструкции систем мобильности и жизнеобеспечения]. Stratum Plus J 1:125–143

    Google Scholar 

  16. Benito-Calvo A, de la Torre I (2011) Analysis of orientation patterns in Olduvai Bed I assemblages using GIS techniques: implications for site formation processes. J Hum Evol 61:50–60. https://doi.org/10.1016/j.jhevol.2011.02.011

    Article  Google Scholar 

  17. Bertran P, Bordes JG, Barré A, Lenoble A, Mourre V (2006) Fabrique d’amas de débitage: données expérimentales. Bull Soc Préhist Fr 103:33–47. https://doi.org/10.3406/bspf.2006.13394

    Article  Google Scholar 

  18. Bertran P, Klaric L, Lenoble A, Masson B, Vallin L (2010) The impact of periglacial processes on Palaeolithic sites: the case of sorted patterned grounds. Quat Int 214(1–2):17–29. https://doi.org/10.1016/j.quaint.2009.10.021

    Article  Google Scholar 

  19. Bertran P, Lenoble A, Todisco D, Desrosiers PM, Sørensen M (2012) Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. J Archaeol Sci 39(10):3148–3166. https://doi.org/10.1016/j.jas.2012.04.055

    Article  Google Scholar 

  20. Bertran P, Beauval C, Boulogne S, Brenet M, Costamagno S, Feuillet T, Laroulandie V, Lenoble A, Malaurent P, Mallye JB (2015) Experimental archaeology in a mid-latitude periglacial context: insight into site formation and taphonomic processes. J Archaeol Sci 57:283–301. https://doi.org/10.1016/j.jas.2015.02.039

    Article  Google Scholar 

  21. Binford LR (1978) Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. Am Antiq 43(3):330–361

    Google Scholar 

  22. Binford LR (1983) Pursuit of the past. Decoding the Archaeological Record. Thames & Hudson Ltd, London

    Google Scholar 

  23. Binford LR (1987) Researching ambiguity: frames of reference and site structure. In: Kent S (ed) Method and theory for activity area research: an ethnoarchaeological approach. Columbia University Press, New York, pp 449–512

    Google Scholar 

  24. Binford LR, Mills MGL, Stone NM (1988) Hyaena scavenging behaviour and its implications for the interpretation of faunal assemblages from FLK 22 (the Zinj Floor) at Olduvai Gorge. J Anthropol Archaeol 7:99–135. https://doi.org/10.1016/0278-4165(88)90011-6

    Article  Google Scholar 

  25. Bodu P, Salomon H, Leroyer M, Naton HG, Lacarriere J, Dessoles M (2014) An open-air site from the recent Middle Palaeolithic in the Paris Basin (France): Les Bossats at Ormesson (Seine-et-Marne). Quat Int 331:39–59. https://doi.org/10.1016/j.quaint.2013.10.029

    Article  Google Scholar 

  26. Boëda E (2013) Techno-logique et technologie. Une paleo-histoire des objects lithiques tranchants. @rchéo-éditions, Prigonrieux

  27. Boscato P, Ronchitelli A (2008) Strutture di combustione in depositi del Paleolitico medio del Sud Italia, Atti XVII Congr. Ass. Antrop. It. Springer, New York, pp 218–225

    Google Scholar 

  28. Boscato P, Cuomo O, Ronchitelli A, Spadacenta B (2002) Il Riparo del Molare (Salerno): applicazione di un G.I.S. alla paleosuperficie del tg. 56. In: Peretto C (ed) Analisi informatizzata e trattamento dati delle strutture di abitato di età preistorica e protostorica in Italia. Origines, Firenze, pp 45–58

    Google Scholar 

  29. Boschian G, Saccà D (2010) Ambiguities in human and elephant interactions? Stories of bones, sand and water from Castel di Guido (Italy). Quat Int 214:3–16. https://doi.org/10.1016/j.quaint.2009.10.016

    Article  Google Scholar 

  30. Bountalis AC, Kuhn BF (2014) Cave usage by multiple taphonomic agents: issues towards interpreting the fossil bearing cave deposits in South Africa. Am J Zoolog Res 2(4):55–61. https://doi.org/10.12691/ajzr-2-4-1

    Article  Google Scholar 

  31. Bourguignon L, Sellami F, Deloze V, Sellier-Segard N, Beyries S, Emery-Barbier A (2002) L’habitat moustérien de «La Folie» (Poitiers, Vienne): synthése des premiers résultats. Paléo 14:29–48

    Google Scholar 

  32. Bowers PM, Bonnichsen R, Hoch DM (1983) Flake dispersal experiments: noncultural transformation of the archaeological record. Am Antiq 48(3):553–572

    Google Scholar 

  33. Camarós E, Cueto M, Teira L, Münzel SC, Plassard F, Arias P, Rivals F (2017) Bears in the scene: Pleistocene complex interactions with implications concerning the study of Neanderthal behavior. Quat Int 435:237–246. https://doi.org/10.1016/j.quaint.2015.11.027

    Article  Google Scholar 

  34. Cancellieri E (2015) Over the hills and far away: last glacial maximum lithic technology around the Great Adriatic Plain. Archeopress, Oxford

    Google Scholar 

  35. Carr PJ, Bradbury AP (2004) Exploring mass analysis, screens, and attributes. In: Hall CT, Larson ML (eds) Aggregate analysis in chipped stone. University of Utah Press, Salt Lake City, pp 21–44

    Google Scholar 

  36. Carrer F (2017) Interpreting intra-site spatial patterns in seasonal contexts: an ethnographical case study from the Western Alps. J Archaeol Method Theory 24(2):303–327. https://doi.org/10.1007/s10816-015-9268-5

    Article  Google Scholar 

  37. Chabai V, Richter J, Uthmeier T (eds) (2005) Kabazi II: last interglacial occupation, environment and subsistence, vol. 1. Crimean Branch. National Academy of Sciences of the Ukraine, Simferopol, Köln

    Google Scholar 

  38. Chabai V, Richter J, Uthmeier T (eds) (2006) Kabazi II: the 70000 years since the last interglacial, vol. 2. Crimean Branch. National Academy of Sciences of the Ukraine, Simferopol, Köln

    Google Scholar 

  39. Chabai V, Richter J, Uthmeier T (eds) (2007) Kabazi V: interstratification of Micoquian & Levallois-Mousterian Camp Sites, vol. 3 (1). Crimean Branch. National Academy of Sciences of the Ukraine, Simferopol, Köln

    Google Scholar 

  40. Chacón MG, Bargalló A, Gabucio MJ, Rivals F, Vaquero M (2015) Neanderthal behaviors from a spatio-temporal perspective: an interdisciplinary approach to interpret archaeological assemblages. In: Conard NJ, Delagnes A (eds) Settlement dynamics of the Middle Paleolithic and Middle Stone Age, vol IV. Kerns Verlag, Tübingen, pp 253–294

    Google Scholar 

  41. Chaplin RE (1971) The study of animal bones from archaeological sites. Seminar Press, New York

    Google Scholar 

  42. Clark AE (2015) Spatial structure and the temporality of assemblage formation: a comparative study of seven open air Middle Paleolithic sites in France. University of Arizona, U.S.A, Ph.D. Dissertation

    Google Scholar 

  43. Clarke DL (1977) Spatial archaeology. Academic Press. Inc., London

    Google Scholar 

  44. Cobo-Sánchez L, Aramendi J, Domínguez-Rodrigo M (2014) Orientation patterns of wildebeest bones on the lake Masek floodplain (Serengeti, Tanzania) and their relevance to interpret anisotropy in the Olduvai lacustrine floodplain. Quat Int 322-323:277–284. https://doi.org/10.1016/j.quaint.2013.07.130

    Article  Google Scholar 

  45. Conard NJ (2001) River terraces, volcanic craters and middle Palaeolithic settlement in the Rhineland. In: Conard NJ (ed) Settlement dynamics of the Middle Paleolithic and Middle Stone Age, vol I. Kerns Verlag, Tübingen, pp 221–413

    Google Scholar 

  46. Conolly J, Lake M (2006) Geographical information system in archaeology. Cambridge University Press, Cambridge

    Google Scholar 

  47. Crema ER, Bianchi E (2013) Looking for patterns in the noise: non-site spatial-analysis in Sebkha Kelbia. In: Mulazzani S (ed) Le Capsien de hergla (Tunisie). Culture, environnement et économie. Africa Magna Verlag, Frankfurt, pp 385–395

    Google Scholar 

  48. Cremaschi M, Peresani M, Pizziolo G (2002) Analisi spaziale del suolo d’abitato musteriano BR6BASE della Grotta di Fumane. In: Peretto C (ed) Analisi informatizzata e trattamento dati delle strutture di abitato di età preistorica e protostorica in Italia. Origines, Firenze, pp 58–70

    Google Scholar 

  49. Crezzini J, Boscato P, Ricci S, Ronchitelli A, Spagnolo V, Boschin F (2016) A spotted hyaena den in the Middle Palaeolithic of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy). Archaeol Anthropol Sci 8:227–240. https://doi.org/10.1007/s12520-015-0273-0

    Article  Google Scholar 

  50. Cyrek K, Socha P, Stefaniak K, Madeyska T, Mirosław-Grabowska J, Sudoł M, Czyżewski L (2010) Palaeolithic of Biśnik Cave (Southern Poland) within the environmental background. Quat Int 220(1–2):5–30. https://doi.org/10.1016/j.quaint.2009.09.014

    Article  Google Scholar 

  51. Daujeard C, Abrams G, Germonpré M, Le Pape JM, Wampach A, Di Modica K, Moncel MH (2016) Neanderthal and animal karstic occupations from southern Belgium and south-eastern France: regional or common features? Quat Int 411:179–197. https://doi.org/10.1016/j.quaint.2016.02.009

    Article  Google Scholar 

  52. de la Torre I, Wehr K (2018) Site formation processes of the early Acheulean assemblage at EF-HR (Olduvai Gorge, Tanzania). J Hum Evol 120:298–328. https://doi.org/10.1016/j.jhevol.2017.07.002

    Article  Google Scholar 

  53. de la Torre I, Vanwezer N, Benito-Calvo A, Proffitt T, Mora R (2019) Spatial and orientation patterns of experimental stone tool refits. Archaeol Anthropol Sci 11:4569–4584. https://doi.org/10.1007/s12520-018-0701-z

    Article  Google Scholar 

  54. de Lumley H (ed) (1969) Une Cabane acheuléenne dans la Grotte du Lazaret (Nice). Mémoires der la Société Préhistorique Française, Paris

    Google Scholar 

  55. de Lumley H, Echassoux A, Bailon S, Cauche D, de Marchi MP, Desclaux E, El Guennouni K, Khatib S, Lacombat F, Roger T, Valensi P (2004) Le sol d’occupation acheuléen de l’unité archéostratigraphique UA 25 de la grotte du Lazaret (Nice, Alpes-Maritimes). Edisud, Aix-en-Provence

    Google Scholar 

  56. de Lumley H, Barrier P, Cauche D, Echassoux A, El Guennouni K, Khatib S, Mestour B, Valensi P (2018) Comportements de subsistance et mode de vie des Homo erectus Européens évolués de la Grotte du Lazaret. In: de Lumley MA (Ed.), Les restes humains fossiles de la grotte du Lazaret. Nice, Alpes-Maritimes. France. CNRS Editions, Paris, pp 155–215

    Google Scholar 

  57. Dell’Unto N (2014) The use of 3D models for intra-site investigation in archaeology. In: Campana S, Remondino F (eds) 3D recording and modeling in archaeology and cultural heritage. BAR International Series 2598. Archaeopress

  58. Demay L, Péan S, Patou-Mathis M (2012) Mammoths used as food and building resources by Neanderthals: Zooarchaeological study applied to layer 4, Molodova I (Ukraine). Quat Int 276-277:212–226. https://doi.org/10.1016/j.quaint.2011.11.019

    Article  Google Scholar 

  59. Depaepe P (2004) Fonctions des sites et gestion du territorire: le Paléolithique Moyen Récent de la Vallée de la Vanne (France). In: Conard NJ (ed) Settlement dynamics of the Middle Paleolithic and Middle Stone Age, vol II. Kerns Verlag, Tübingen, pp 373–393

    Google Scholar 

  60. Diedrich CG (2011) The Crocuta crocuta spelaea (Goldfuss 1823) population and its prey from the Late Pleistocene Teufelskammer Cave hyena den besides the famous Paleolithic Neandertal Cave (NRW, NW Germany). Hist Biol 23(2–3):237–270. https://doi.org/10.1080/08912963.2010.530348

    Article  Google Scholar 

  61. Domínguez-Rodrigo M, García-Pérez A (2013) Testing the accuracy of different A-axis types for measuring the orientation of bones in the archaeological record. PLoS One 8:e68955. https://doi.org/10.1371/journal.pone.0068955

    Article  Google Scholar 

  62. Domínguez-Rodrigo M, Bunn HT, Pickering TR, Mabulla AZP, Musiba CM, Baquedano E, Ashley GM, Diez-Martin F, Santonja M, Uribelarrea D, Barba R, Yravedra J, Barboni D, Arriaza C, Gidna A (2012) Autochthony and orientation patterns in Olduvai Bed I: a re-examination of the status of postdepositional biasing of archaeological assemblages from FLK North (FLKN). J Archaeol Sci 39:2116–2127. https://doi.org/10.1016/j.jas.2012.02.027

    Article  Google Scholar 

  63. Domínguez-Rodrigo M, Uribelarrea D, Santonja M, Bunn HT, García-Pérez A, Pérez-González A, Panera J, Rubio-Jara S, Mabulla A, Baquedano E, Yravedra J, Díez-Martín F (2014) Autochthonous anisotropy of archaeological materials by the action of water: experimental and archaeological reassessment of the orientation patterns at the Olduvai sites. J Archaeol Sci 41:44–68. https://doi.org/10.1016/j.jas.2013.07.025

    Article  Google Scholar 

  64. Domínguez-Rodrigo M, Cobo-Sánchez L, Yravedra J, Uribelarrea D, Arriaza C, Organista E, Baquedano E (2018) Fluvial spatial taphonomy: a new method for the study of post-depositional processes. Archaeol Anthropol Sci 10:1769–1789. https://doi.org/10.1007/s12520-017-0497-2

    Article  Google Scholar 

  65. Eren MI, Durant A, Neudorf C, Haslam M, Shipton C, Bora J, Korisettar R, Petraglia M (2010) Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: a test case from South India. J Archaeol Sci 37:3010–3021. https://doi.org/10.1016/j.jas.2010.06.024

    Article  Google Scholar 

  66. Esteban-Nadal M (2012) Can Archaeozoology and Taphonomy contribute to knowledge of the feeding habits of the Iberian wolf? J Archaeol Sci 39:3208–3216. https://doi.org/10.1016/j.jas.2012.05.004

    Article  Google Scholar 

  67. Folgado M, Brenet M (2010) Economie de débitage et organisation de l’espace technique sur le site du Paléolithique moyen de plein-air de La Mouline (Dordogne, France). In: Conard NJ, Delagnes A (eds) Settlement dynamics of the Middle Paleolithic and Middle Stone Age, vol III. Kerns Verlag, Tübingen, pp 427–454

    Google Scholar 

  68. Fourvel JB (2012) Hyénidés modernes et fossiles d’Europe et d’Afrique: taphonomie comparée de leurs assemblages osseux. Ph.D. Thesis, Université Toulouse le Mirail - Toulouse II

  69. G.E.P.P. (Grupo para o Estudo do Paleolítico Portugues) (1983) A estação paleolitíca de Vilas Ruivas (Ródão). Campanha de 1979. O Arqueológo Port 4:15–38

    Google Scholar 

  70. Gabucio MJ, Cáceres I, Rosell J, Saladié P, Vallverdú J (2014) From small bone fragments to Neanderthal activity areas: the case of Level O of the Abric Romaní (Capellades, Barcelona, Spain). Quat Int 330:36–51. https://doi.org/10.1016/j.quaint.2013.12.015

    Article  Google Scholar 

  71. Gabucio MJ, Fernández-Laso MC, Rosell J (2018) Turning a rock shelter into a home. Neanderthal use of space in Abric Romaní levels M and O. Hist Biol 30(6):743–766. https://doi.org/10.1080/08912963.2017.1340470

    Article  Google Scholar 

  72. Galanidou N (1997) ‘Home is where the hearth is’: the spatial organisation of the upper Palaeolithic Rockshelter occupations at Klithi and Kastristsa in Northwest Greece. BAR international series 687, Oxford

  73. Gambassini P, Ronchitelli A (1998) Linee di sviluppo dei complessi del Paleolitico inferiore-medio nel Cilento. Riv Sci Preist XLIX:357–378

  74. García-Moreno A, Smith GM, Kindler L, Pop E, Roebroeks W, Gaudzinski-Windheuser S, Klinkenberg V (2016) Evaluating the incidence of hydrological processes during site formation through orientation analysis. A case study of the middle Palaeolithic Lakeland site of Neumark-Nord 2 (Germany). J Archaeol Sci Reports 6:82–93. https://doi.org/10.1016/j.jasrep.2016.01.023

    Article  Google Scholar 

  75. Ghinassi M, Colonese AC, Giuseppe ZD, Govoni L, Vetro DL, Malavasi G, Martini F, Ricciardi S, Sala B (2009) The Late Pleistocene clastic deposits in the Romito Cave, southern Italy: a proxy record of environmental changes and human presence. J Quat Sci 24(4):383–398. https://doi.org/10.1002/jqs.1236

    Article  Google Scholar 

  76. Giusti D, Arzarello M (2016) The need for a taphonomic perspective in spatial analysis: formation processes at the Early Pleistocene site of Pirro Nord (P13), Apricena. Italy J Archaeol Sci Reports 8:235–249. https://doi.org/10.1016/j.jasrep.2016.06.014

    Article  Google Scholar 

  77. Giusti D, Tourloukis V, Konidaris G, Thompson N, Karkanas P, Panagopoulou E, Harvati K (2018) Beyond maps: patterns of formation processes at the Middle Pleistocene open-air site of Marathousa 1, Megalopolis Basin. Greece Quat Int 497:137–153. https://doi.org/10.1016/j.quaint.2018.01.041

    Article  Google Scholar 

  78. Hayden B (2012) Neandertal social structure? Oxf J Archaeol 31(1):1–26. https://doi.org/10.1111/j.1468-0092.2011.00376.x

    Article  Google Scholar 

  79. Henry D (2012) The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quat Int 247:246–266. https://doi.org/10.1016/j.quaint.2010.10.013

    Article  Google Scholar 

  80. Hérisson D (2013) Étude des comportements des premiers Néandertaliens du Nord de la France. Les occupations saaliennes des gisements de Biache-Saint-Vaast et de Therdonne. Université de Lille, France, Ph.D. Dissertation

    Google Scholar 

  81. Hodder I, Orton C (1976) Spatial analysis in archaeology. Cambridge University Press, Cambridge

    Google Scholar 

  82. Hoffecker J (2002) Desolate landscapes: Ice Age settlement in Eastern Europe. Rutgers University Press, Piscataway

    Google Scholar 

  83. Homsey LK (2010) The hunter-gatherer use of caves and rockshelters in the American Midsouth. A geoarchaeological and spatial analysis of archaeological features at Dust Cave BAR IS 2129

  84. Iacoviello F, Martini I (2012) Provenance and geological significance of red mud and other clastic sediments of the Mugnano cave (Montagnola Senese, Italy). Int J Speleology 41:317–328. https://doi.org/10.5038/1827-806X.41.2.17

    Article  Google Scholar 

  85. Iacoviello F, Martini I (2013) Clay minerals in cave sediments and terra rossa soils in the Montagnola Senese karst massif (Italy). Geological Quarterly 57:527–536. https://doi.org/10.7306/gq.1111

    Article  Google Scholar 

  86. Jaubert J, Delagnes A (2007) De l’espace parcouru à l’espace habité au Paléolithique moyen. In: Maureille B (ed) Vandermeersch B. Les Néandertaliens, Biologie et cultures. Editions du CTHS, pp 263–281

    Google Scholar 

  87. Jaubert J, Verheyden S, Genty D, Soulier M, Cheng H, Blamart D, Cheng H, Blamart D, Burlet C, Camus H, Delaby S, Deldicque D, Edwards RL, Ferrier C, Lacrampe-Cuyaubère F, Lévêque F, Maksud F, Mora P, Muth X, Régnier É, Rouzaud JN, Santos F (2016) Early Neanderthal constructions deep in Bruniquel cave in southwestern France. Nature 534(7605):111–114. https://doi.org/10.1038/nature18291

    Article  Google Scholar 

  88. Kent S (1987) Understanding the use of space: an ethnoarchaeological approach. In: Kent S (ed) Method and theory for activity area research. Columbia University Press, New York, pp 1–60

    Google Scholar 

  89. Kent S (1991) The relationship between mobility strategies and site structure. In: Kroll EM, Douglas Price T (eds) The interpretation of archaeological spatial patterning. Plenum Press, New York, pp 33–59

    Google Scholar 

  90. Klein R (1999) The human career. Chicago University Press, Chicago

    Google Scholar 

  91. Knell EJ (2012) Minimum analytical nodules and Late Paleoindian Cody complex lithic technological Organization at Hell gap. Wyoming Plains Anthropol 57:325–351. https://doi.org/10.1179/pan.2012.024

    Article  Google Scholar 

  92. Kolen J (1999) Hominids without homes: on the nature of Middle Palaeolithic settlement in Europe. In: Roebroeks W, Gamble C (eds) The Middle Palaeolithic occupation of Europe. University of Leiden Press, Leiden, pp 139–175

    Google Scholar 

  93. Krajcarz M, Krajcarz MT (2014) The red fox (Vulpes vulpes) as an accumulator of bones in cave-like environments. Int J Osteoarchaeol 24(4):459–475. https://doi.org/10.1002/oa.2233

    Article  Google Scholar 

  94. Kvamme KL (1997) Patterns and models of debitage dispersal in percussion flaking. Lithic Technol 22:122–138

    Google Scholar 

  95. Kvamme KL (1998) Spatial structure in mass debitage scatters. In: Sullivan AP (ed) Surface archaeology. University of New Mexico Press, Albuquerque, pp 127–141

    Google Scholar 

  96. Larson ML, Kornfeld M (1997) Chipped stone nodules: theory, method, and examples. Lithic Technol 22:4–18

    Google Scholar 

  97. Leierer L, Jambrina-Enríquez M, Herrera-Herrera AV, Connolly R, Hernández CM, Galván B, Mallol C (2019) Insights into the timing, intensity and natural setting of Neanderthal occupation from the geoarchaeological study of combustion structures: a micromorphological and biomarker investigation of El Salt, unit Xb, Alcoy, Spain. PLoS One 14(4):e0214955. https://doi.org/10.1371/journal.pone.0214955

    Article  Google Scholar 

  98. Lembo G, Bertolini M, Peretto C, Rufo E, Thun Hohenstein U (2012) Analisi spaziali dei reperti faunistici e litici dell’US 5. In: Peretto, C. (Ed.), L’insediamento musteriano di Grotta Reali. Rocchetta a Volturno, Molise. Museologia Scientifica e Naturalistica 8/2, pp. 133-141

  99. Lenoble A, Bertran P (2004) Fabric of Palaeolithic levels: methods and implications for site formation processes. J Archaeol Sci 31:457–469. https://doi.org/10.1016/j.jas.2003.09.013

    Article  Google Scholar 

  100. Lenoble A, Bertran P, Lacrampe F (2008) Solifluction-induced modifications of archaeological levels: simulation based on experimental data from a modern periglacial slope and application to French Palaeolithic sites. J Archaeol Sci 35:99–110. https://doi.org/10.1016/j.jas.2007.02.011

    Article  Google Scholar 

  101. Lo Presti V, Antonioli F, Auriemma R, Ronchitelli A, Scicchitano G, Spampinato CR, Anzidei M, Agizza S, Benini A, Ferranti L, Gasparo Morticelli M, Giarrusso C, Mastronuzzi G, Monaco C, Porqueddu A (2014) Millstone coastal quarries of the Mediterranean: a new class of sea level indicator. Quat Int 332:126–142. https://doi.org/10.1016/j.quaint.2014.03.021

    Article  Google Scholar 

  102. López-Ortega E, Bargalló A, de Lombera-Hermida A, Mosquera M, Ollé A, Rodríguez-Álvarez XP (2017) Quartz and quartzite refits at Gran Dolina (Sierra de Atapuerca, Burgos): connecting lithic artefacts in the middle Pleistocene unit of TD10. 1. Quat Int 433(A):85–102. https://doi.org/10.1016/j.quaint.2015.09.026

    Article  Google Scholar 

  103. Machado J, Pérez L (2016) Temporal frameworks to approach human behavior concealed in Middle Palaeolithic palimpsests: a high-resolution example from El Salt Stratigraphic Unit X (Alicante, Spain). Quat Int 417:66–81. https://doi.org/10.1016/j.quaint.2015.11.050

    Article  Google Scholar 

  104. Machado J, Hernández M, Mallol C, Galván B (2013) Lithic production, site formation and Middle Palaeolithic palimpsest analysis: in search of human occupation episodes at Abric del Pastor Stratigraphic Unit IV (Alicante, Spain). J Archaeol Sci 40(5):2254–2273. https://doi.org/10.1016/j.jas.2013.01.002

    Article  Google Scholar 

  105. Mallegni F, Ronchitelli A (1987) Découverte d’une mandibule néandertalienne à l’abri du Molare près de Scario (Salerno-Italie): observations stratigraphiques et palethnologiques, étude anthropologique. L’Anthropologie 91:163–173

    Google Scholar 

  106. Mallegni F, Ronchitelli A (1989) Deciduous teeth of the Neandertal mandible from Molare shelter, near Scario (Salerno, Italy). Am J Phys Anthropol 79:475–482. https://doi.org/10.1002/ajpa.1330790404

    Article  Google Scholar 

  107. Marciani G, Spagnolo V, Aureli D, Ranaldo F, Boscato P, Ronchitelli A (2016) Middle Palaeolithic technical behaviour: material import-export and Levallois production at the SU 13 of Oscurusciuto rock shelter, Southern Italy. J Lit Stud 3(2):24. https://doi.org/10.2218/jls.v3i2.1414

    Article  Google Scholar 

  108. Marín J, Rodríguez-Hidalgo A, Vallverdú J, Gómez de Soler B, Rivals F, Rabuñal JR, Pineda A, Chacón MG, Carbonell E, Saladié P (2019) Neanderthal logistic mobility during MIS3: Zooarchaeological perspective of Abric Romaní level P (Spain). Quat Sci Rev 225:1–31. https://doi.org/10.1016/j.quascirev.2019.106033

    Article  Google Scholar 

  109. Martínez-Moreno J, Mora R, Roy Sunyer M, Benito Calvo A (2016) From site formation processes to human behaviour: towards a constructive approach to depict palimpsests in Roca dels Bous. Quat Int 417:82–93. https://doi.org/10.1016/j.quaint.2015.09.038

    Article  Google Scholar 

  110. Martini I (2011) Cave clastic sediments and implications for speleogenesis: new insights from the Mugnano Cave (Montagnola Senese, Northern Apennines, Italy). Geomorphology 134(3–4):452–460. https://doi.org/10.1016/j.geomorph.2011.07.024

    Article  Google Scholar 

  111. Martini I, Ronchitelli A, Arrighi S, Capecchi G, Ricci S, Scaramucci S, Spagnolo V, Gambassini P, Moroni A (2018) Cave clastic sediments as a tool for refining the study of human occupation of prehistoric sites: insights from the cave site of La Cala (Cilento, southern Italy). J Quat Sci 33(5):586–596. https://doi.org/10.1002/jqs.3038

    Article  Google Scholar 

  112. Mellars P (1996) The Neanderthal legacy. An archaeological perspective from Western Europe. Princeton University Press, Princeton

    Google Scholar 

  113. Miller GL (2016) MANA from heaven: testing the utility of minimum analytical nodule analysis at large, repeatedly reoccupied ceremonial sites. J Archaeol Sci Reports 8:1–10. https://doi.org/10.1016/j.jasrep.2016.05.053

    Article  Google Scholar 

  114. Moreau G, Locht J-L (2017) Importance de l’utilisation du Système d’Information Géographique pour les vastes sites de plein air du Paléolithique moyen en France septentrionale. L’Exemple de Caours (Somme, France) et Beauvais (Oise, France). Archéo numér 1(1):1–12. https://doi.org/10.21494/iste.op.2017.0170

    Article  Google Scholar 

  115. Moroni A, Boschian G, Crezzini J, Montanari-Canini G, Marciani G, Capecchi G, Arrighi S, Aureli D, Berto C, Freguglia M, Araujo A, Scaramucci S, Hublin JJ, Lauer T, Benazzi S, Parenti F, Bonato M, Ricci S, Talamo S, Segre AG, Boschin F, Spagnolo V (2019) Late Neandertals in Central Italy. High-resolution chronicles from Grotta dei Santi (Monte Argentario - Tuscany). Quat Sci Rev 217:130–151. https://doi.org/10.1016/j.quascirev.2018.11.021

    Article  Google Scholar 

  116. Negre J, Santiago F, Salemme M (2019) The underlying spatial structure of a Guanaco (Lama guanicoe) bonebed assemblage in the Fuegian Region, Subantarctic Insular Argentina. J Archaeol Method Theory 26:3–24. https://doi.org/10.1007/s10816-017-9357-8

    Article  Google Scholar 

  117. Neruda P (2017) GIS analysis of the spatial distribution of middle Palaeolithic artefacts in Kůlna cave (Czech Republic). Quat Int 435(A):58–76. https://doi.org/10.1016/j.quaint.2015.10.028

    Article  Google Scholar 

  118. Newcomer MH, Sieveking G de G S (1980) Experimental flake scatter-patterns: a new interpretative technique. J Field Archaeol 7:345–352

  119. O’Connell J (1987) Alyawara site structure and its archaeological implications. Am Antiq 52(1):74–108. https://doi.org/10.2307/281061

    Article  Google Scholar 

  120. Oron M, Goren-Inbar N (2014) Mousterian intra-site spatial patterning at Quneitra, Golan heights. Quat Int 331:186–202. https://doi.org/10.1016/j.quaint.2013.04.013

    Article  Google Scholar 

  121. Ortiz Nieto-Márquez I, Baena Preysler J (2017) Did stones speak about people? Flint catchment and Neanderthal behavior from area 3 (Cañaveral, Madrid-Spain). Quat Int 435(A):144–163. https://doi.org/10.1016/j.quaint.2016.01.019

    Article  Google Scholar 

  122. Otte M (2015) Aptitudes cognitives des Néandertaliens. Bull Mus Anthropol Préhist Monaco (55):15–40

  123. Păunescu A (1993). Ripiceni-Izvor paleolitic şi mezolitic: studiu monografic. Editura Academiei Române

  124. Peretto C, Biagi P, Boschian G, Broglio A, De Stefani M, Fasani L, Fontana F, Grifoni R, Guerreschi A, Iacopini A, Minelli A, Pala R, Peresani M, Radis G, Ronchitelli A, Sarti L, Hohenstein UT, Tozzi C (2004) Living-floors and structures from the lower paleolithic to the bronze age in Italy. Coll Antropol 28:63–88

    Google Scholar 

  125. Plavšić S (2015) Spatial Distribution Analysis of Burnt Artifacts and Combustion Areas in Layer 3 of Velika Balanica Cave [Анализа просторне дистрибуције горелих артефаката и зона горења у слоју 3 Велике Баланице]. J Serb Archaeol Soc 31:7–37

    Google Scholar 

  126. Rasic JT (2004) Debitage Taphonomy. In: Hall CT, Larson ML (eds) Aggregate analysis in chipped stone. University of Utah Press, Salt Lake City, pp 112–135

    Google Scholar 

  127. Real C, Eixea A, Sanchis A, Morales JV, Klasen N, Zilhão J, Villaverde V (2018) Abrigo de la Quebrada level IV (Valencia, Spain): interpreting a Middle Palaeolithic palimpsest from a zooarchaeological and lithic perspective. J Paleo Arch:1–38. https://doi.org/10.1007/s41982-018-0012-z

  128. Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13(2):255–266. https://doi.org/10.2307/3212829

    Article  Google Scholar 

  129. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B 39(2):172–212

    Google Scholar 

  130. Roebroeks W (1988) From find scatters to early hominid behaviour: A study of Middle Palaeolithic riverside settlements at Maastricht-Belvédère – The Netherlands. PhD Thesis, University of Leiden

  131. Romagnoli F, Vaquero M (2016) Quantitative stone tools intra-site point and orientation patterns of a middle Palaeolithic living floor: a GIS multi-scalar spatial and temporal approach. Quartar 63:47–60. https://doi.org/10.7485/QU63_3

    Article  Google Scholar 

  132. Ronchitelli A (1993) Paleosuperfici del Paleolitico medio al Molare di Scario (Salerno). Atti XXX Riun. Sc. I.I.P.P, Firenze, pp 233–246

    Google Scholar 

  133. Ronchitelli A (1998) Structures d’habitat dans la Grotta Grande de Scario (S. Giovanni a Piro - Salerno - Italie). Atti XIII Congresso UISPP, vol. 2, sez. 5, A.B.A.C.O. Edizioni, Forlì, pp. 153-164

  134. Ronchitelli A, Abbazzi L, Accorsi CA, Bandini Mazzanti M, Bernardi M, Masini F, Mercuri A, Mezzabotta C, Rook L (1998) The Grotta Grande of Scario (Salerno - southern Italy): stratigraphy, archaeological finds, pollen and mammals. Proceedings 1st International Congress on: Science and technology for the safeguard of cultural heritage in the Mediterranean Basin, Catania, Siracusa - Italy, Palermo, pp. 1529-1535

  135. Ronchitelli A, Freguglia M, Boscato P (2010) Paléoécologie et stratégies de subsistance al’Abri du Molare de Scario (S. Giovanni a Piro-Salerne-Italie du Sud): niveaux Paléolithique moyen 44–49, données préliminaires. In: Conard NJ (ed) Settlement dynamics of the Middle Paleolithic and Middle Stone Age, vol II. Kerns Verlag, Tübingen, pp 249–264

    Google Scholar 

  136. Ronchitelli A, Boscato P, Surdi G, Masini F, Petruso D, Accorsi CA, Torri P (2011) The Grotta Grande of Scario (Salerno, Italy): archaeology and environment during the last interglacial (MIS 5) of the mediterranean region. Quat Int 231:95–109. https://doi.org/10.1016/j.quaint.2010.07.006

    Article  Google Scholar 

  137. Ronchitelli A, Boscato P, Aureli D, Boschin F, Crezzini J, Marciani G, Poggi G, Ricci S, Spagnolo V (2014) The Middle Palaeolithic living floor of Unit 15 (55 kyrs BP) from the Oscurusciuto Shelter, Ginosa, Taranto, Southern Italy. In: Abstract Book of the 4 th Annual Meeting of the European Society for the study of Human Evolution (ESHE), Florence, 18–20 September, 2014, p. 143

  138. Rosell J, Blasco R, Fernandez-Lazo C, Vaquero M, Carbonell I, Roura E (2012) Connecting areas: faunal refits as a diagnostic element to identify synchronicity in the Abric Romaní archaeological assemblages. Quat Int 252:56–67. https://doi.org/10.1016/j.quaint.2011.02.019

    Article  Google Scholar 

  139. Ruiter DJ, Berger LR (2000) Leopards as taphonomic agents in Dolomitic Caves. Implications for bone accumulations in the Hominid-bearing deposits of South Africa. J Archaeol Sci 27:665–684. https://doi.org/10.1006/jasc.1999.0470

    Article  Google Scholar 

  140. Saladié P, Fernández P, Rodríguez-Hidalgo A, Huguet R, Pineda A, Cáceres I, Marín J, Vallverdú J, Carbonell E (2019) The TD6. 3 faunal assemblage of the Gran Dolina site (Atapuerca, Spain): a late Early Pleistocene hyena den. Hist Biol 31(6):665–683. https://doi.org/10.1080/08912963.2017.1384476

    Article  Google Scholar 

  141. Sánchez-Romero L, Benito-Calvo A, Pérez-González A, Santonja M (2016) Assessment of accumulation processes at the Middle Pleistocene site of Ambrona (Soria, Spain). Density and orientation patterns in spatial datasets derived from excavations conducted from the 1960s to the present. PloS one 11(12):e0167595. https://doi.org/10.1371/journal.pone.0167595

    Article  Google Scholar 

  142. Sanchis A, Real C, Sauqué V, Núñez-Lahuerta C, Égüez N, Tormo C, Pérez Ripoll M, Carrión Marco Y, Duarte E, de la Rasilla M (2019) Neanderthal and carnivore activities at Llonin Cave, Asturias, northern Iberian Peninsula: faunal study of Mousterian levels (MIS 3). C R Palevol 18(1):113–141. https://doi.org/10.1016/j.crpv.2018.06.001

    Article  Google Scholar 

  143. Sañudo Die P (2008) Spatial analysis of Bolomor cave level IV (Tavernes de la Valldigna, Valencia). Annali dell’Università di Ferrara e Mus Sci Nat 4:155–160

    Google Scholar 

  144. Sauqué V, Sanchis A (2017) Leopards as taphonomic agents in the Iberian Pleistocene, the case of Racó del Duc (Valencia, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 472:67–82. https://doi.org/10.1016/j.palaeo.2017.01.016

    Article  Google Scholar 

  145. Schick KD (1986) Stone Age sites in the making. Experiments in the formation and transformation of archaeological occurrences. BAR International Series 319, Oxford

  146. Schiffer MB (1972) Archaeological context and systemic context. Am Antiq 37:156–165. https://doi.org/10.2307/278203

    Article  Google Scholar 

  147. Shott MJ (1994) Size and form in the analysis of flake debris: review and recent approaches. J Archaeol Method Theory 1:69–110. https://doi.org/10.1007/BF02229424

    Article  Google Scholar 

  148. Spagnolo V (2017) Studio delle strategie insediative del Paleolitico medio in Italia centro-meridionale. Università degli Studi di Siena, PhD Dissertation

    Google Scholar 

  149. Spagnolo V, Marciani G, Aureli D, Berna F, Boscato P, Ranaldo F, Ronchitelli A (2016) Between hearths and volcanic ash: the SU 13 palimpsest of the Oscurusciuto rock shelter (Ginosa - Southern Italy): analytical and interpretative questions. Quat Int 417:105–121. https://doi.org/10.1016/j.quaint.2015.11.046

    Article  Google Scholar 

  150. Spagnolo V, Marciani G, Aureli D, Berna F, Toniello G, Astudillo FJ, Boschin F, Boscato P, Ronchitelli A (2019) Neanderthal activity and resting areas from Stratigraphic Unit 13 at the Middle Palaeolithic site of Oscurusciuto (Ginosa - Taranto, Southern Italy). Quat Sci Rev 217:169–193. https://doi.org/10.1016/j.quascirev.2018.06.024

    Article  Google Scholar 

  151. Spagnolo V, Marciani G, Aureli D, Martini I, Boscato P, Boschin F, Ronchitelli A (2020a) Climbing the time to see Neanderthal behaviour’s continuity and discontinuity. SU 11 of the Oscurusciuto Rockshelter (Ginosa - Southern Italy). Archaeol Anthropol Sci 12(54):1–30. https://doi.org/10.1007/s12520-019-00971-9

    Article  Google Scholar 

  152. Spagnolo V, Crezzini J, Marciani G, Capecchi G, Arrighi S, Aureli D, Ekberg I, Scaramucci S, Tassoni L, Boschin F, Moroni A (2020b). Neandertal camps and hyena dens. Living floor 150A at Grotta dei Santi (Monte Argentario, Tuscany, Italy). J Archaeol Sci Reports 30:1-26. https://doi.org/10.1016/j.jasrep.2020.102249

  153. Speth JD, Meignen L, Bar-Yosef O, Goldberg P (2012) Spatial organization of middle Paleolithic occupation X in Kebara cave (Israel): concentrations of animal bones. Quat Int 247:85–102. https://doi.org/10.1016/j.quaint.2011.03.001

    Article  Google Scholar 

  154. Stapert D (1990) Middle Palaeolithic dwellings: fact or fiction? Some applications of the ring and sector method. Palaeohistoria 32:1–19

    Google Scholar 

  155. Stevenson MG (1985) The formation of artifact assemblages at workshop/habitation sites: models from peace point in northern Alberta. Am Antiq 50:63–81. https://doi.org/10.2307/280634

    Article  Google Scholar 

  156. Stevenson MG (1991) Beyond the formation of hearth-associated artifact assemblages. In: Kroll EM, Douglas Price T (eds) The interpretation of archaeological spatial patterning. Springer, New York-London, pp 269–299

    Google Scholar 

  157. Thacher D, Milne SB, Park R (2017) Applying GIS and statistical analysis to assess the correlation of human behaviour and ephemeral architectural features among Palaeo-Eskimo sites on Southern Baffin Island, Nunavut. J Archaeol Sci Reports 14:21–30. https://doi.org/10.1016/j.jasrep.2017.05.004

    Article  Google Scholar 

  158. Tobler WR (1970) A computer movie simulating urban growth in the Detroit Region. Econ Geogr 46(Supplement):234–240

    Google Scholar 

  159. Uthmeier T (2006) Stone tools, horses and cognition: transformation of lithic raw materials at the Middle Paleolithic open air kill and butchering site of Kabazi II, level III/1. In: Chabai VP, Jürgen Richter VC, Uthmeier T (Eds.), Kabazi II: the 70 000 years since the last interglacial. Colonia, pp. 253-269

  160. Valensi P, Michel V, El Guennouni K, Liouville M (2013) New data on human behavior from a 160,000 year old Acheulean occupation level at Lazaret cave, south-east France: an archaeozoological approach. Quat Int 316:123–139. https://doi.org/10.1016/j.quaint.2013.10.034

    Article  Google Scholar 

  161. Vallin L, Masson B, Caspar JP (2001) Taphonomy at Hermies, France: a Mousterian knapping site in a loessic context. J Field Archaeol 28:419–436. https://doi.org/10.1179/jfa.2001.28.3-4.419

    Article  Google Scholar 

  162. Vaquero M (2008) The history of stones: behavioural inferences and temporal resolution of an archaeological assemblage from the Middle Palaeolithic. J Archaeol Sci 35(12):3178–3185. https://doi.org/10.1016/j.jas.2008.07.006

    Article  Google Scholar 

  163. Vaquero M, Chacón MG, Cuartero F, García-Antón MD, Gómez de Soler B, Martínez K (2012) Time and space in the formation of lithic assemblages: the example of Abric Romaní Level J. Quat Int 247:162–181. https://doi.org/10.1016/j.quaint.2010.12.015

    Article  Google Scholar 

  164. Villa P (1982) Conjoinable pieces and site formation processes. Am Antiq 47(2):276–290. https://doi.org/10.2307/279901

    Article  Google Scholar 

  165. Villaverde V, Eixea A, Zilhão J, Sanchis A, Real C, Bergadà M (2017) Diachronic variation in the Middle Paleolithic settlement of Abrigo de la Quebrada (Chelva, Spain). Quat Int 435(A):164–179. https://doi.org/10.1016/j.quaint.2015.09.075

    Article  Google Scholar 

  166. Way AM (2018) A behavioral approach to cumulative palimpsests: an example from Weereewaa (Lake George). Australia J Anthropol Archaeol 52:59–70. https://doi.org/10.1016/j.jaa.2018.09.005

    Article  Google Scholar 

  167. Werdelin L, Lewis ME (2013) Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene Carnivoran guild. PLoS One 8(3):e57944. https://doi.org/10.1371/journal.pone.0057944

    Article  Google Scholar 

  168. White B (2012) Minimum analytical nodules and lithic activities at site W2, Hunter Valley, New South Wales. Austr Archaeol 75:25–36. https://doi.org/10.1080/03122417.2012.11681947

    Article  Google Scholar 

  169. Wiśniewski A, Adamiec G, Badura J, Bluszcz A, Kowalska A, Kufel-Diakowska B, Mikołajczyk A, Murczkiewicz M, Musil R, Przybylski B, Skrzypek G, Stefaniak K, Zych J (2013) Occupation dynamics north of the Carpathians and Sudetes during the Weichselian (MIS5d-3): the Lower Silesia (SW Poland) case study. Quat Int 294:20–40. https://doi.org/10.1016/j.quaint.2011.09.016

    Article  Google Scholar 

  170. Wood W, Johnson D (1978) A survey of disturbance processes in archaeological site formation. Adv Archaeol Method Theory 1:315–381

    Google Scholar 

Download references

Acknowledgements

The research project of the Molare Rock shelter is still ongoing, and it is carried on by the R.U. Prehistory and Anthropology (Department of Physical Sciences, Earth and Environment of the University of Siena, Italy), with the partnership of local Soprintendenza Archeologia Belle Arti e Paesaggio per le provincie di Salerno e Avellino. We would like to thank S. Giovanni a Piro municipality for the support received. The success of this research would not have been possible without the colleagues Paolo Gambassini, Paolo Boscato and Adriana Moroni and the students and volunteers that participated to the fieldworks. In particular, we grateful to Antonio Mazzoleni, Giuditta Grandinetti, Giuliano Marroni, Renato Mattia, Carlo Alberto Bartoli, Franco Ruo Roch, Romina Laurito, Linda Di Filippo, Maria Assunta Luperto, Marta Lo Monaco, Ursula Wierer and Maddalena Serra for their irreplaceable collaboration. A fond memory also for all the workers (especially Antonio Perilli, Aldo Balbi and Ugo Balbi), Benito di Mauro and his boat, Michele Fonseca (for him Cilento cuisine) and to Melina Lombardi for her kindness. Thanks to Ph.D Davide Susini for suggestions related to taphonomic analysis. Thanks to Sem Scaramucci for help with the English text.

Funding

The sedimentological and stratigraphic analysis was funded by the National Geographic Society/Exploration Grant Program (grant NGS-61617R-19 to I. Martini).

Author information

Affiliations

Authors

Contributions

Annamaria Ronchitelli is the research coordinator. Paolo Boscato, Francesco Boschin and Jacopo Crezzini analysed the faunal remains. Daniele Aureli studied the lithic technology. Giulio Poggi performed the 3D reconstruction of the living floor. Isak Ekberg helped in data collecting and entry of the stones into the geodatabase. Ivan Martini performed the sedimentological analysis. Vincenzo Spagnolo conceptualized the paper, and performed the RMU analysis, the palimpsest dissecting and the spatial analyses. All the authors collaborated in writing reviewing and editing the final version of the paper.

Corresponding author

Correspondence to Vincenzo Spagnolo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Settlement Patterns Dynamics of the Middle Paleolithic and Middle Stone Age

Electronic supplementary material

Fig. S1
figure14

Main cross-sections of Layer 56 with sub-layer differentiation (PNG 278 kb)

Fig. S2
figure15

Digital Elevation Model (a) and Slope Model (b) of the living floor (PNG 1452 kb)

Fig. S3
figure16

Example of the dominant additional concept aimed at obtaining average size elongated flakes, convergent flakes and wide flakes, here recognized from a core with bipolar technique also attested (PNG 4461 kb)

Fig. S4
figure17

Examples of the additional concept aimed at obtaining bladelets from cores on flake (upper photos) and from cores (lower photos) (PNG 3251 kb)

Fig. S5
figure18

Examples of the Levallois concept here recognized from elongated, large and convergent blanks (PNG 3000 kb)

Fig. S6
figure19

Transformation L(d) of the Ripley’s K function of the analysed categories of findings from Layer 65 Sorted by Dimensional Classes (DC) and sub-layer: lower sub-layer DC 1 (a); lower sub-layer DC 2 (b); lower sub-layer DC 3 (b); lower sub-layer DC 4-5 (d); upper sub-layer DC 1 (e); upper sub-layer DC 2 (f); upper sub-layer DC 3 (g); upper sub-layer DC 4-5 (h). Distance measures in the x axis are expressed in meters (PNG 1355 kb)

Fig. S7
figure20

Transformation L(d) of the Ripley’s K function of the RMUs: 1 (a); 6 (b); 7 (b); 17 (d); 18 (e); 25 (f); 29 (g); 31 (h). Distance measures in the x axis are expressed in meters (PNG 1364 kb)

Fig. S8
figure21

Transformation L(d) of the Ripley’s K function of the RMUs: 32 (a); 51 (b); 60 (b); 61 (d); 64 (e); 66 (f); 67 (g); 69 (h). Distance measures in the x axis are expressed in meters (PNG 1387 kb)

Fig. S9
figure22

Transformation L(d) of the Ripley’s K function of the RMUs: 70 (a); 74 (b); 75 (b); 77 (d); 81 (e); 82 (f); 92 (g); 95 (h). Distance measures in the x axis are expressed in meters (PNG 1340 kb)

Fig. S10
figure23

Transformation L(d) of the Ripley’s K function of the RMUs: 96 (a); 97 (b); 103 (b); 104 (d); 106 (e); 111 (f); 113 (g). Distance measures in the x axis are expressed in meters (PNG 1178 kb)

Fig. S11
figure24

Transformation L(d) of the Ripley’s K function of the stones on the upper sub-layer sorted by weight class and lithic manufacts from the layer 56 sorted by technological macro-category and sub-layer: upper sub-layer small blocks (a); upper sub-layer large blocks (b); debris from the lower sub-layer (c); debris from the upper sub-layer (d); tools from the lower sub-layer (e); tools from the upper sub-layer (f); cores from the lower sub-layer (g); cores from the upper sub-layer (h). Distance measures in the x axis are expressed in meters (PNG 1385 kb)

Fig. S12
figure25

Refitting/conjoint spatial patterns (a) and distances (b) (PNG 395 kb)

Fig. S13
figure26

Spatial correlation between the high-density areas of lithic debris and the highly clustered (a) and clustered (b) RMU respectively (PNG 1372 kb)

Fig. S14
figure27

Linear regression of the area/weight measures of stones (with the relative coefficient of determination) (PNG 118 kb)

High Resolution Image (TIF 28976 kb)

High Resolution Image (TIF 44351 kb)

High Resolution Image (TIF 135985 kb)

High Resolution Image (TIF 136003 kb)

High Resolution Image (TIF 83836 kb)

High Resolution Image (TIF 52346 kb)

High Resolution Image (TIF 52346 kb)

High Resolution Image (TIF 52347 kb)

High Resolution Image (TIF 52346 kb)

High Resolution Image (TIF 49733 kb)

High Resolution Image (TIF 52345 kb)

High Resolution Image (TIF 20370 kb)

High Resolution Image (TIF 66590 kb)

High Resolution Image (TIF 11379 kb)

Table S1

Complete list of the refitting/conjoint sets from the Layer 56 and relative distribution of items among the spits. The nomenclature system adopted to list the sets take into account the kind of relation between the items. More specifically, the débitage refittings are indicated by the related IDs separated by a comma. The conjoints (between fractured items) are indicated by the related IDs connected by a hyphen (DOCX 15 kb)

Table S2

Raw results of the L(d) Ripley’s function applied on the sample of reliable RMUs made by at least 10 items. In the first part of the excel sheet the results for each RMU are reported. The first column, with the ID of the RMU, shows the different distance band (expressed in decimetres scale). In other fields, the expected (ExpectedK), observed (ObservedK), low (LwConfEnv) and high (HiConfEnv) confidence envelopes, differences between observed and expected values (DiffK) and between observed and high confidence envelopes (DiffOHC). These last values were used to assess the clustered/random patterns with the relative rate of statistical reliability. An RMUs is considered ass clustered if the DiffOHC is positive. In the second part of the sheet, the results of L(d) Ripley’s analyses are summarised, reporting the evaluated patterns. (XLSX 83 kb)

Table S3

Data related to the clustering rate evaluation of the clustered RMUs. For each RMU, the total number of items (TOT), the number of findings into (Area A) and outside (Area B) the highest density area and the relative ratio (A/B ratio), the minimum (DBN min - m), average (DBN average - m) and maximum (DBN Max - m) distance band of neighbours and the evaluated patterns are reported (DOCX 17 kb)

Table S4

Bravais-Pearson correlation between the variables (A/B ratio, DBN min - m, DBN average – m, DBN Max - m) used to assess the clustering rate of the RMUs (DOCX 13 kb)

Table S5

Distribution of the RMUs by spatial patterns (clustered versus random) and RMU-size classes (N items = 10-17; 20-29; 33-120). (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spagnolo, V., Aureli, D., Martini, I. et al. Short and close in time: overlapped occupation from the layer 56 of the Molare Rock shelter (Southern Italy). Archaeol Anthropol Sci 12, 92 (2020). https://doi.org/10.1007/s12520-020-01037-x

Download citation

Keywords

  • Neanderthal behaviour
  • Settlement dynamics
  • Living floor
  • Palimpsest
  • Lithic raw material units
  • Spatial analysis