Eco-friendly nanocomposite products based on BPA-free epoxy–silica hybrid materials for stone conservation

  • Olivia Gómez-LasernaEmail author
  • Gabriele Lando
  • Leire Kortazar
  • Irantzu Martinez-Arkarazo
  • Iciar Monterrubio
  • Elena Sevillano
  • Paola Cardiano
  • María Ángeles Olazabal
Original Paper


Epoxy–silica hybrids (i.e., as such, enriched with TiO2 and cerium-doped TiO2 nanoparticles), based on a bisphenol (BPA)-free cycloaliphatic precursor, were designed for potential applications as stone conservation multifunctional materials. To this aim, nanoparticles were specifically prepared and their suitability for incorporation into the hybrids was assessed by means of X-ray diffraction (XRD), BET porosimetry, and photocatalytic activity measurements. On the other hand, the organic-inorganic materials, both undoped and doped with nanoparticles, were sol-gel synthesized in methanol starting from 1,4-cycloexanediglycidyether (CHDM-DGE) and 1,8-diaminooctane (DAO), in the presence of silica-forming additives, such as 3-glycidyloxypropyltrimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS), and isobuthyl (trimethoxy) silane (iBuTMS). A multianalytical methodology was employed for material characterization. The homogeneity, the extent of the epoxy cleavage, and the absence of partially hydrolyzed Si (OR)3 groups in the cross-linked hybrid networks were established thanks to a combination of scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS), and imaging Raman analysis. Moreover, the thermal, hydrophobic, and chromatic properties of the hybrids were investigated by thermogravimetry/differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), contact angle, and color measurements. Finally, the antimicrobial characterization was studied using a sowing strain of Gram-positive bacteria. The results showed that, among all, one of the epoxy–silica hybrid formulations features some of the main prerequisites to be fulfilled for a successful stone conservation treatment.


Hybrid materials Bisphenol A-free Self-cleaning Biocidal capacity Nanocomposites 



L. Kortazar gratefully acknowledges her post-doctoral contract from the University of the Basque Country (UPV-EHU) (ESPDOC 2018). The authors are grateful to the technical support provided by the Raman-LASPEA laboratory and to the General X-Ray Service: Unit of Rocks and Minerals, of The Advanced Research Facilities of the SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF).

Funding information

This work has been financially supported by the project PHETRUM (CTQ2017-82761-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) and by the European Regional Development Fund (FEDER).


  1. Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A (2014) Anticorrosive coatings prepared using epoxy–silica hybrid nanocomposite materials. Ind Eng Chem Res 53:10858–10869CrossRefGoogle Scholar
  2. Bauer AW, Kirby WMM, Sherris JC, Turck AM (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496CrossRefGoogle Scholar
  3. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Themochim Acta 523:25–45CrossRefGoogle Scholar
  4. Bondioli F, Darecchio MA, Luyt AS, Messori M (2011) Epoxy resin modified with in situ generated metal oxides by means of sol-gel process. J Appl Polym Sci 122:1792–1799CrossRefGoogle Scholar
  5. Calza P, Rigo L, Sangermano M (2011) Investigations of photocatalytic activities of photosensitive semiconductors dispersed into epoxy matrix. Appl Catal B 106:657–663CrossRefGoogle Scholar
  6. Cardiano P (2003) Ann Chim (Rome) 93(11):947Google Scholar
  7. Cardiano P (2008) Hydrophobic properties of new epoxy-silica hybrids. J Appl Polym Sci 108(5):3380–3387CrossRefGoogle Scholar
  8. Cardiano P, Sergi S, Lo Schiavo S, Piraino P (2001) Ann Chim (Rome) 91(1–2):51Google Scholar
  9. Cardiano P, Lo Schiavo S, Piraino P (2010) Hydrorepellent properties of organic–inorganic hybrid materials. J Non-Cryst Solids 356(18–19):917–926CrossRefGoogle Scholar
  10. Chatterjee A, Islam MS (2008) Fabrication and characterization of TiO2–epoxy nanocomposite. Mater Sci Eng 487(1–2):574–585CrossRefGoogle Scholar
  11. Chen Q, Lu T, Xu M, Meng C, Hu Y, Sun K, Ahlimak I (2011) Appl Phys Lett 98:73Google Scholar
  12. Chen C, Marcus IM, Waller T, Walker SL (2018) Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles. Anal Bioanal Chem 410(24):6133–6140CrossRefGoogle Scholar
  13. Choudhury B, Borah B, Choudhury A (2012) Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium. Photochem Photobiol 88:257–264CrossRefGoogle Scholar
  14. Colangiuli D, Calia A, Bianco N (2015) Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Constr Build Mater 93:189–196CrossRefGoogle Scholar
  15. Corcione C, Striani R, Frigione M (2014) Novel hydrophobic free-solvent UV-cured hybrid organic–inorganic methacrylic-based coatings for porous stones. Prog Org Coat 77(4):803–812CrossRefGoogle Scholar
  16. Devaraju S, Krishnadevi Sriharshitha S, Alagar M (2019) J Polym Environ 27(1):141CrossRefGoogle Scholar
  17. Ghosal A, Ahmad S (2017) High performance anti-corrosive epoxy–titania hybrid nanocomposite coatings. New J Chem 41:4599–4610CrossRefGoogle Scholar
  18. Gomez-Laserna O, Olazabal MA, Morillas H, Prieto-Taboada N, Martinez-Arkarazo I, Arana G, Mariariaga JM (2013) In-situ spectroscopic assessment of the conservation state of building materials from a Palace house affected by infiltration water. J Raman Spectrosc 44(9):1277–1284CrossRefGoogle Scholar
  19. Gomez-Laserna O, Arrizabalaga I, Prieto-Taboada N, Olazabal MA, Arana G, Madariaga JM (2015) In situ DRIFT, Raman, and XRF implementation in a multianalytical methodology to diagnose the impact suffered by built heritage in urban atmospheres. Anal Bioanal Chem 407(19):5635–5647CrossRefGoogle Scholar
  20. Gómez-Laserna O, Lanzafame P, Papanikolaou G, Olazabal MA, Lo Schiavo S, Cardiano P (2018) Analytical assessment to develop innovative nanostructured BPA-free epoxy-silica resins as multifunctional stone conservation materials. Sci Total Environ 645:817–826CrossRefGoogle Scholar
  21. Gomez-Laserna O, Cardiano P, Diez-Garcia M, Prieto-Taboada KL, Olazabal MA, Madariaga JM (2018) Environ Sci Pollut Res Int 25(5):4371CrossRefGoogle Scholar
  22. Hosseini M, Karapanagiotis I (2018) Advanced materials for the conservation of stone. Springer, New YorkGoogle Scholar
  23. Jansen M, Guenther E (1995) Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem Mater 7:2110–2114CrossRefGoogle Scholar
  24. Jun YW, Choi JS, Cheon J (2006) Angew Chem Int. Ed 45:3414Google Scholar
  25. Kapridaki C, Maravelaki-Kalaitzaki P (2013) TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat 76:400–410CrossRefGoogle Scholar
  26. La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, Crisci GM, Urzì C (2014) Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeterior Biodegradation 96:87–96CrossRefGoogle Scholar
  27. Levy D, Zayat M (2015) The sol-gel handbook: synthesis, characterization, and applications. Wiley-VCH Verlag GmbH & Co, KgaA, WeinheimCrossRefGoogle Scholar
  28. Luo Y, Xiao L, Zhang X (2015) Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. J Cult Herit 16:470–478CrossRefGoogle Scholar
  29. Mandefredi M, Barberis E, Rava A, Poli T, Chiantore I, Marengo E (2016) Anal Bioanal Chem 21:5711CrossRefGoogle Scholar
  30. Manjumeena M, Venkatesan R, Duraibabu D, Sudha J, Rajendran N, Kalaicheval PT (2016) Green nanosilver as reinforcing eco-friendly additive to epoxy coating for augmented anticorrosive and antimicrobial behavior. Silicon 8:277CrossRefGoogle Scholar
  31. Martí M, Frígols B, Serrano-Aroca A (2018) Antimicrobial characterization of advanced materials for bioengineering applications. J Vis Exp.
  32. Moustakas NG, Kontos AG, Likodimos V, Katsaros F, Boukos N, Tsoutsou D, Dimoulas A, Romanos GE, Dioysiou DD, Falaras P (2013) Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl Catal B 130-131:14–24CrossRefGoogle Scholar
  33. Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800CrossRefGoogle Scholar
  34. Niederberger M, Antonietti M (2007) In: Nonaqueous sol-gel routes to nanocrystalline metal oxides. Wiley-VCH, Weinheim, p 119Google Scholar
  35. NORMAL (1993) Protocol 43/93-colour determinations of opaque surfaces. ICR-CNR, RomaGoogle Scholar
  36. Pandey S, Mishra SB (2011) Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J Sol-Gel Sci Technol 59:73–94CrossRefGoogle Scholar
  37. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  38. Plutino MR, Guido E, Colleoni C, Rosace G (2017a) Effect of GPTMS functionalization on the improvement of the pH-sensitive methyl red photostability. Sens Actuator B-Chem 238:281–291CrossRefGoogle Scholar
  39. Plutino MR, Colleoni C, Donelli I, Freddi G, Guido E, Maschi O, Mezzi A, Rosace G (2017b) Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity. J Colloid Interface Sci 506:504–517CrossRefGoogle Scholar
  40. Ramis X, Fernández-Francos X (2016) Coatings 6(8):1Google Scholar
  41. Reszczynska J, Grzybb T, Sobczakc JW, Lisowski W, Gazda M, Ohtani B, Zaleska A (2014) Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity. Appl Surf Sci 307:333–345CrossRefGoogle Scholar
  42. Rosace G, Guido E, Colleoni C, Brucale M, Piperopolous E, Milone C, Plutino MR (2017) Halochromic resorufin-GPTMS hybrid sol-gel: chemical-physical properties and use as pH sensor fabric coating. Sens Actuator B-Chem 241:85–95CrossRefGoogle Scholar
  43. Scalarone D, Lazzari M, Chiantore O (2012) Polym Degrad Stab 97:2146CrossRefGoogle Scholar
  44. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  45. Son S, Won J, Kim JJ, Deuk Jang Y, Soo Kang Y, Dug Kim S (2009) Appl Mater Interfaces 1(2):293CrossRefGoogle Scholar
  46. Striani R, Corcione C, Dell’Anna G, Frigione MM (2016) Prog Org Coat 101:1CrossRefGoogle Scholar
  47. Susmita P, Chetri P, Choudhury B, Ameen Ahmed G, Choudhury A (2015) J Colloid Interface Sci 439:54CrossRefGoogle Scholar
  48. Trovato V, Colleoni C, Castellano A, Plutino MR (2018) The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring. J Sol-gel Sci Techn 87:27–40CrossRefGoogle Scholar
  49. Tulliani JM, Formia A, Sangermano M (2011) Organic-inorganic material for the consolidation of plaster. J Cult Herit 12:364–371CrossRefGoogle Scholar
  50. Waller T, Marcus IM, Walker SL (2018) Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms. Anal Bioanal Chem 410(24):6125–6132CrossRefGoogle Scholar
  51. Wang Y, Luc K, Feng C (2011) Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2. J Rare Earths 29(9):866–871CrossRefGoogle Scholar
  52. Warscheid H, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46(4):343–368CrossRefGoogle Scholar
  53. Wu C, Lien-Hsu S (2010) Preparation of epoxy/silica and epoxy/titania hybrid resists via a sol−gel process for nanoimprint lithography. J Phys Chem C 114:2179–2183CrossRefGoogle Scholar
  54. Xu F, Zeng W, Li D (2019) Recent advance in alkoxysilane-based consolidants for stone. Prog Org Coat 127:45–54CrossRefGoogle Scholar
  55. Yan N, Zhu Z, Zhang J, Zhao Z, Liu Q (2012) Preparation and properties of ce-doped TiO2 photocatalyst. Mater Res Bull 47(8):1869–1873CrossRefGoogle Scholar
  56. Zhang J, Tian B, Wang L, Xing M, Lei J (2018) In: Photocatalysis. Lecture notes in chemistry, vol 100. Springer, Singapore, p 197Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Olivia Gómez-Laserna
    • 1
    Email author
  • Gabriele Lando
    • 2
  • Leire Kortazar
    • 1
  • Irantzu Martinez-Arkarazo
    • 1
  • Iciar Monterrubio
    • 1
  • Elena Sevillano
    • 3
  • Paola Cardiano
    • 2
  • María Ángeles Olazabal
    • 1
  1. 1.Department of Analytical ChemistryUniversity of the Basque Country (EHU/UPV)BilbaoSpain
  2. 2.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  3. 3.Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain

Personalised recommendations