Adams B, Byrd J (2014) Commingled human remains: methods in recovery, analysis and identification. Elsevier Science & Technology, San Diego United States
Google Scholar
Adzhubei AA, Sternberg MJE, Makarov AA (2013) Polyproline-II helix in proteins: structure and function. J Mol Biol 425:2100–2132. https://doi.org/10.1016/j.jmb.2013.03.018
Article
Google Scholar
Ajie HO, Hauschka PV, Kaplan IR (1991) Comparison of bone collagen and osteocalcin for determination of radiocarbon ages and paleodietary reconstruction I. Earth Planet Sci Lett 107:380–388
Article
Google Scholar
Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317
Article
Google Scholar
Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451. https://doi.org/10.1016/0305-4403(90)90007-r
Article
Google Scholar
Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–285. https://doi.org/10.1126/science.1137614
Article
Google Scholar
Asscher Y, Regev L, Weiner S, Boaretto E (2011) Atomic disorder in fossil tooth and bone mineral: an FTIR study using the grinding curve method. Archeosciences:135–141. https://doi.org/10.4000/archeosciences.3062
Assis S, Santos A, Keenleyside A (2016) Paleohistology and the study of human remains: past, present and future approaches. Rev Arg Antrop Biol 18:1–17. https://doi.org/10.17139/raab.2016.0018.02.02
Article
Google Scholar
Balzer A, Gleixner G, Grupe G et al (1997) In vitro decomposition of bone collagen by soil bacteria: the implications for stable isotope analysis in archaeometry. Archaeometry 39:415–429
Article
Google Scholar
Baxter JD, Biltz RM, Pellegrino ED (1966) The physical state of bone carbonate. A comparative infra-red study in several mineralized tissues. Yale J Biol Med 38:456–470
Google Scholar
Bell L (2012) Histotaphonomy. In: Bone histology. CRC Press, pp 241–251
Bell LS (1990) Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. J Archaeol Sci 17:85–102. https://doi.org/10.1016/0305-4403(90)90016-X
Article
Google Scholar
Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystalization window. J Archaeol Sci 31:867–882
Article
Google Scholar
Booth TJ, Madgwick R (2016) New evidence for diverse secondary burial practices in Iron age Britain: a histological case study. J Archaeol Sci 67:14–24. https://doi.org/10.1016/j.jas.2016.01.010
Article
Google Scholar
Boskey AL (2003) Bone mineral crystal size. Osteoporos Int 14(Suppl 5):S16–S20; discussion S20–1. https://doi.org/10.1007/s00198-003-1468-2
Article
Google Scholar
Brangule A, Gross KA (2015) Importance of FTIR spectra deconvolution for the analysis of amorphous calcium phosphates. IOP Conf Ser: Mater Sci Eng 77:012027. https://doi.org/10.1088/1757-899X/77/1/012027
Article
Google Scholar
Brock F, Higham T, Ramsey CB (2010) Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. J Archaeol Sci 37:855–865. https://doi.org/10.1016/j.jas.2009.11.015
Article
Google Scholar
Brock F, Wood R, Higham TFG, Ditchfield P, Bayliss A, Ramsey CB (2012) Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54:879–886. https://doi.org/10.1017/S0033822200047524
Article
Google Scholar
Buckley M, Collins M, Thomas-Oates J (2009) Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:3843–3854. https://doi.org/10.1002/rcm.4316
Article
Google Scholar
Caruso V, Cummaudo M, Maderna E, Cappella A, Caudullo G, Scarpulla V, Cattaneo C (2018) A comparative analysis of microscopic alterations in modern and ancient undecalcified and decalcified dry bones. Am J Phys Anthropol 165:363–369. https://doi.org/10.1002/ajpa.23348
Article
Google Scholar
Cattaneo C, DiMartino S, Scali S, Craig OE, Grandi M, Sokol RJ (1999) Determining the human origin of fragments of burnt bone: a comparative study of histological, immunological and DNA techniques. Forensic Sci Int 102:181–191
Article
Google Scholar
Chadefaux C, Le Hô A-S, Bellot-Gurlet L, Reiche I (2009) Curve-fitting micro-ATR-FTIR studies of the amide I and II bands of type I collagen in archaeological bone materials. e-PS 6:129–137
Google Scholar
Chovalopoulou M-E, Bertsatos A, Manolis SK (2017) Identification of skeletal remains from a Mycenaean burial in Kastrouli-Desfina. Greece Mediter Archaeol Archaeom 17:265–269. https://doi.org/10.5281/zenodo.556353
Article
Google Scholar
Collins MJ, Galley P (1998) Towards an optimal method of archaeological collagen extraction: the influence of pH and grinding. Anc Biomol 2:209–223
Google Scholar
Collins MJ, CM N–M, Hiller J et al (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394. https://doi.org/10.1111/1475-4754.t01-1-00071
Article
Google Scholar
Collins MJ, Penkman KEH, Rohland N, Shapiro B, Dobberstein RC, Ritz-Timme S, Hofreiter M (2009) Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc Biol Sci 276:2971–2977. https://doi.org/10.1098/rspb.2009.0563
Article
Google Scholar
Collins MJ, Riley MS, Child AM, Turner-Walker G (1995) A basic mathematical simulation of the chemical degradation of ancient collagen. J Archaeol Sci 22:175–183. https://doi.org/10.1006/jasc.1995.0019
Article
Google Scholar
Collins MJ, Waite ER, van Duin ACT, Eglinton G (1999) Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philos Trans R Soc Lond Ser B Biol Sci 354:51–64
Article
Google Scholar
Cuijpers AGFM (2006) Histological identification of bone fragments in archaeology: telling humans apart from horses and cattle. Int J Osteoarchaeol 16:465–480. https://doi.org/10.1002/oa.848
Article
Google Scholar
De Boer HH, Van der Merwe AE, Maat GJR (2013) The diagnostic value of microscopy in dry bone palaeopathology: a review. Int J Paleopathol 3:113–121. https://doi.org/10.1016/j.ijpp.2013.03.004
Article
Google Scholar
DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809. https://doi.org/10.1038/317806a0T
Article
Google Scholar
DeNiro MJ, Weiner S (1988) Chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions from prehistoric bones. Geochim Cosmochim Acta 52:2197–2206. https://doi.org/10.1016/0016-7037(88)90122-6
Article
Google Scholar
Dobberstein RC, Collins M, Craig O et al (2009) Archaeological collagen: why worry about collagen diagenesis. Archaeol Anthropol Sci 1:31–42
Article
Google Scholar
Doden E, Halves R (1984) On the functional morphology of the human petrous bone. Am J Anat 169:451–462. https://doi.org/10.1002/aja.1001690407
Article
Google Scholar
Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149:84–91. https://doi.org/10.1002/ajpa.22097
Article
Google Scholar
Douka K, Slon V, Stringer C, Potts R, Hübner A, Meyer M, Spoor F, Pääbo S, Higham T (2017) Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone. J Hum Evol 107:86–93. https://doi.org/10.1016/j.jhevol.2017.03.003
Article
Google Scholar
Elliott JC (1964) The crystallographic structure of dental enamel and related apatites. PhD thesis, University of London, London, UK
Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375
Article
Google Scholar
Fernandez-Jalvo Y, Andrews P, Pesquero D et al (2010) Early bone diagenesis in temperate environments. Part I: surface features and histology. Palaeogeogr Palaeoclimatol Palaeoecol 288:62–81
Article
Google Scholar
Fernández-Jalvo Y, Pesquero MD, Tormo L (2016) Now a bone, then calcite. Palaeogeogr Palaeoclimatol Palaeoecol 444:60–70
Article
Google Scholar
Figueiredo MM, Gamelas JAF, Martins AG (2012) Characterization of bone and bone-based graft materials using FTIR spectroscopy. In: Theophanides T (ed) Infrared spectroscopy—life and biomedical sciences. IntechOpen, pp 315–338
Fleet ME (2009) Infrared spectra of carbonate apatites: v2-Region bands. Biomaterials 30:1473–1481. https://doi.org/10.1016/j.biomaterials.2008.12.007
Article
Google Scholar
Fleet ME, Liu X (2004) Location of type B carbonate ion in type A–B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182. https://doi.org/10.1016/j.jssc.2004.04.002
Article
Google Scholar
Fleet ME, Liu X (2005) Local structure of channel ions in carbonate apatite. Biomaterials 26:7548–7554. https://doi.org/10.1016/j.biomaterials.2005.05.025
Article
Google Scholar
Fleet ME, Liu X, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral 89:1422–1432. https://doi.org/10.2138/am-2004-1009
Article
Google Scholar
Frisch T, Sørensen MS, Overgaard S, Bretlau P (2000) Estimation of volume referent bone turnover in the otic capsule after sequential point labeling. Ann Otol Rhinol Laryngol 109:33–39. https://doi.org/10.1177/000348940010900106
Article
Google Scholar
Gander W, von Matt U (1993) Smoothing filters. In: Gander W, Hřebíček J (eds) Solving problems in scientific computing using maple and Matlab®. Springer, Berlin, pp 121–139
Chapter
Google Scholar
Garland AN (1989) Microscopical analysis of fossil bone. Appl Geochem 4:215–229. https://doi.org/10.1016/0883-2927(89)90021-8
Article
Google Scholar
Grupe G (1995) Preservation of collagen in bone from dry, sandy soil. J Archaeol Sci 22:193–199
Article
Google Scholar
Grupe G, Balzer A, Turban-Just S (2002) Modeling protein diagenesis in ancient bone: towards a validation of stable isotope data. In: Ambrose SH, Katzenberg MA (eds) Biogeochemical approaches to paleodietary analysis. Springer US, Boston, MA, pp 173–187
Chapter
Google Scholar
Gueta R, Natan A, Addadi L, Weiner S, Refson K, Kronik L (2007) Local atomic order and infrared spectra of biogenic calcite. Angew Chem Int Ed Eng 46:291–294. https://doi.org/10.1002/anie.200603327
Article
Google Scholar
Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243–265. https://doi.org/10.1177/002580248102100403
Article
Google Scholar
Hanson M, Cain CR (2007) Examining histology to identify burned bone. J Archaeol Sci 34:1902–1913. https://doi.org/10.1016/j.jas.2007.01.009
Article
Google Scholar
Harbeck M, Grupe G (2009) Experimental chemical degradation compared to natural diagenetic alteration of collagen: implications for collagen quality indicators for stable isotope analysis. Archaeol Anthropol Sci 1:43–57. https://doi.org/10.1007/s12520-009-0004-5
Article
Google Scholar
Hedges REM (2003) On bone collagen—apatite-carbonate isotopic relationships. Int J Osteoarchaeol 13:66–79. https://doi.org/10.1002/oa.660
Article
Google Scholar
Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328. https://doi.org/10.1111/1475-4754.00064
Article
Google Scholar
Hedges REM, Millard AR (1995) Bones and groundwater: towards the modelling of diagenetic processes. J Archaeol Sci 22:155–164. https://doi.org/10.1006/jasc.1995.0017
Article
Google Scholar
Hedges REM, Millard AR, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22:201–209. https://doi.org/10.1006/jasc.1995.0022
Article
Google Scholar
High K, Milner N, Panter I, Penkman KEH (2015) Apatite for destruction: investigating bone degradation due to high acidity at Star Carr. J Archaeol Sci 59:159–168. https://doi.org/10.1016/j.jas.2015.04.001
Article
Google Scholar
Hollund HI, Jans MME, Collins MJ, Kars H, Joosten I, Kars SM (2012) What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, the Netherlands. Int J Osteoarchaeol 22:537–548. https://doi.org/10.1002/oa.1273
Article
Google Scholar
Hunt JM, Wisherd MP, Bonham LC (1950) Infrared absorption spectra of minerals and other inorganic compounds. Anal Chem 22:1478–1497. https://doi.org/10.1021/ac60048a006
Article
Google Scholar
Jackes M, Sherburne R, Lubell D, Barker C, Wayman M (2001) Destruction of microstructure in archaeological bone: a case study from Portugal. Int J Osteoarchaeol 11:415–432
Article
Google Scholar
Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92. https://doi.org/10.1111/j.1469-7580.2004.00250.x
Article
Google Scholar
Jones OA (2014) The study of secondary burial in Mycenaean mortuary traditions: a new approach to the evidence. Tijdschrift voor Mediterrane Archeologie 26:8–13
Google Scholar
Katić V, Vujicić G, Ivanković D et al (1991) Distribution of structural and trace elements in human temporal bone. Biol Trace Elem Res 29:35–43
Article
Google Scholar
Kendall C, Eriksen AMH, Kontopoulos I, Collins MJ, Turner-Walker G (2018) Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491:21–37. https://doi.org/10.1016/j.palaeo.2017.11.041
Article
Google Scholar
King CL, Tayles N, Gordon KC (2011) Re-examining the chemical evaluation of diagenesis in human bone apatite. J Archaeol Sci 38:2222–2230. https://doi.org/10.1016/j.jas.2011.03.023
Article
Google Scholar
Kontopoulos I, Nystrom P, White L (2016) Experimental taphonomy: post-mortem microstructural modifications in sus scrofa domesticus bone. Forensic Sci Int 266:320–328. https://doi.org/10.1016/j.forsciint.2016.06.024
Article
Google Scholar
Kontopoulos I, Presslee S, Penkman K, Collins MJ (2018) Preparation of bone powder for FTIR-ATR analysis: the particle size effect. Vib Spectrosc 99:167–177. https://doi.org/10.1016/j.vibspec.2018.09.004
Article
Google Scholar
Koon HEC, Nicholson RA, Collins MJ (2003) A practical approach to the identification of low temperature heated bone using TEM. J Archaeol Sci 30:1393–1399. https://doi.org/10.1016/S0305-4403(03)00034-7
Article
Google Scholar
Koon HEC, O’Connor TP, Collins MJ (2010) Sorting the butchered from the boiled. J Archaeol Sci 37:62–69. https://doi.org/10.1016/j.jas.2009.08.015
Article
Google Scholar
Kus S, Marczenko Z, Obarski N (1996) Derivative UV-VIS spectrophotometry in analytical chemistry. Chern Anal (Warsaw) 41:899
Google Scholar
Lazarev YA, Grishkovsky BA, Khromova TB (1985) Amide I band of IR spectrum and structure of collagen and related polypeptides. Biopolymers 24:1449–1478. https://doi.org/10.1002/bip.360240804
Article
Google Scholar
Lebon M, Reiche I, Bahain J-J, Chadefaux C, Moigne AM, Fröhlich F, Sémah F, Schwarcz HP, Falguères C (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276. https://doi.org/10.1016/j.jas.2010.03.024
Article
Google Scholar
Lebon M, Reiche I, Gallet X, Bellot-Gurlet L, Zazzo A (2016) Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58:131–145. https://doi.org/10.1017/RDC.2015.11
Article
Google Scholar
Lee-Thorp JA, van der Merwe NJ (1991) Aspects of the chemistry of modern and fossil biological apatites. J Archaeol Sci 18:343–354. https://doi.org/10.1016/0305-4403(91)90070-6
Article
Google Scholar
LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404. https://doi.org/10.1038/206403a0
Article
Google Scholar
LeGeros RZ, Trautz OR, Klein E, LeGeros JP (1969) Two types of carbonate substitution in the apatite structure. Experientia 25:5–7. https://doi.org/10.1007/BF01903856
Article
Google Scholar
LeGeros RZ, Trautz OR, LeGeros JP et al (1967) Apatite crystallites: effects of carbonate on morphology. Science 155:1409–1411. https://doi.org/10.1126/science.155.3768.1409
Article
Google Scholar
Liritzis I, Jin Z, Fan A, Sideris A (2016) Late Helladic and later reuse phases of Kastrouli settlement (Greece): preliminary dating results. Mediter Archaeol Archaeom 16:245–250. https://doi.org/10.5281/zenodo.163775
Article
Google Scholar
Liritzis I, Polymeris GS, Vafiadou A, Sideris A, Levy TE (2019) Luminescence dating of stone wall, tomb and ceramics of Kastrouli (Phokis, Greece) late Helladic settlement: case study. J Cult Herit 35:76–85
Article
Google Scholar
Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230:241–242
Article
Google Scholar
Madupalli H, Pavan B, Tecklenburg MMJ (2017) Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in a and B sites of apatite. J Solid State Chem 255:27–35. https://doi.org/10.1016/j.jssc.2017.07.025
Article
Google Scholar
Mark H, Workman J Jr (2003) Derivatives in spectroscopy: part III—computing the derivative. Spectroscopy 18:106–111
Google Scholar
Masters PM (1987) Preferential preservation of noncollagenous protein during bone diagenesis: implications for chronometric and stable isotopic measurements. Geochim Cosmochim Acta 51:3209–3214. https://doi.org/10.1016/0016-7037(87)90129-3
Article
Google Scholar
Maurer A-F, Person A, Tütken T, Amblard-Pison S, Ségalen L (2014) Bone diagenesis in arid environments: an intra-skeletal approach. Palaeogeogr Palaeoclimatol Palaeoecol 416:17–29. https://doi.org/10.1016/j.palaeo.2014.08.020
Article
Google Scholar
Millard AR (2001) Deterioration of bone. In: Brothwell DR, Pollard AM (eds) Handbook of archaeological sciences. Wiley, pp 633–643
Moustris A, Petrou J (2019) Weather forecast for Greece. In: meteo.gr—Weather forecast for Greece. http://www.meteo.gr/. Accessed 1 Mar 2019
Moutafi I, Voutsaki S (2016) Commingled burials and shifting notions of the self at the onset of the Mycenaean era (1700–1500BCE): the case of the Ayios Vasilios North Cemetery, Laconia. J Archaeol Sci Rep 10:780–790. https://doi.org/10.1016/j.jasrep.2016.05.037
Article
Google Scholar
Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46:220–222
Article
Google Scholar
Nielsen-Marsh C, Gernaey A, Turner-Walker G, et al (2000) The chemical degradation of bone. In: Cox M, Mays S (eds) Human osteology: in archaeology and forensic science. Cambridge University Press, pp 439–454
Nielsen-Marsh CM, Hedges REM (2000a) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27:1139–1150. https://doi.org/10.1006/jasc.1999.0537
Article
Google Scholar
Nielsen-Marsh CM, Hedges REM (2000b) Patterns of diagenesis in bone II: effects of acetic acid treatment and the removal of diagenetic CO3
2−. J Archaeol Sci 27:1151–1159
Article
Google Scholar
Osterholtz AJ, Baustian KM, Martin DL (2013) Commingled and disarticulated human remains: working toward improved theory, method, and data. Springer, New York, NY
Google Scholar
Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821
Article
Google Scholar
Person A, Bocherens H, Mariotti A, Renard M (1996) Diagenetic evolution and experimental heating of bone phosphate. Palaeogeogr Palaeoclimatol Palaeoecol 126:135–149
Article
Google Scholar
Person A, Bocherens H, Saliege J-F et al (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221
Article
Google Scholar
Pesquero MD, Alcalá L, Bell LS, Fernández-Jalvo Y (2015) Bacterial origin of iron-rich microspheres in Miocene mammalian fossils. Palaeogeogr Palaeoclimatol Palaeoecol 420:27–34. https://doi.org/10.1016/j.palaeo.2014.12.006
Article
Google Scholar
Pfretzschner H-U (2004) Fossilization of Haversian bone in aquatic environments. C R Palevol 3:605–616. https://doi.org/10.1016/j.crpv.2004.07.006
Article
Google Scholar
Pfretzschner H-U, Tütken T (2011) Rolling bones—taphonomy of Jurassic dinosaur bones inferred from diagenetic microcracks and mineral infillings. Palaeogeogr Palaeoclimatol Palaeoecol 310:117–123. https://doi.org/10.1016/j.palaeo.2011.01.026
Article
Google Scholar
Piepenbrink H (1989) Examples of chemical changes during fossilisation. Appl Geochem 4:273–280. https://doi.org/10.1016/0883-2927(89)90029-2
Article
Google Scholar
Piepenbrink H (1986) Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation. J Archaeol Sci 13:417–430. https://doi.org/10.1016/0305-4403(86)90012-9
Article
Google Scholar
Poinar HN, Höss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866
Article
Google Scholar
Reiche I, Favre-Quattropani L, Vignaud C, Bocherens H, Charlet L, Menu M (2003) A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Meas Sci Technol 14:1608–1619
Article
Google Scholar
Reiche I, Vignaud C, Menu M (2002) The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry 44:447–459. https://doi.org/10.1111/1475-4754.00077
Article
Google Scholar
Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164
Article
Google Scholar
Rey C, Combes C (2014) What bridges mineral platelets of bone? Bonekey Rep 3:586. https://doi.org/10.1038/bonekey.2014.81
Article
Google Scholar
Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C 27:198–205. https://doi.org/10.1016/j.msec.2006.05.015
Article
Google Scholar
Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104. https://doi.org/10.1016/j.bone.2013.10.023
Article
Google Scholar
Schafer RW (2011) What is a Savitzky-Golay filter? [lecture notes]. IEEE Signal Process Mag 28:111–117. https://doi.org/10.1109/MSP.2011.941097
Article
Google Scholar
Schroeder S (2001) Secondary disposal of the dead: cross-cultural codes. World Cultures 12:77–93
Google Scholar
Sealy J, Johnson M, Richards M, Nehlich O (2014) Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci 47:64–69. https://doi.org/10.1016/j.jas.2014.04.011
Article
Google Scholar
Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
Article
Google Scholar
Sideris A, Liritzis I, Liss Β et al (2017) At-risk cultural heritage: new excavations and finds from the Mycenaean site of Kastrouli, Phokis, Greece. Mediter Archaeol Archaeom 17:271–285. https://doi.org/10.5281/zenodo.163772
Article
Google Scholar
Sponheimer M, Lee-Thorp JA (1999) Alteration of enamel carbonate environments during fossilization. J Archaeol Sci 26:143–150. https://doi.org/10.1006/jasc.1998.0293
Article
Google Scholar
Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G (2008) Bone diagenesis: new data from infrared spectroscopy and X-ray diffraction. Palaeogeogr Palaeoclimatol Palaeoecol 266:168–174. https://doi.org/10.1016/j.palaeo.2008.03.022
Article
Google Scholar
Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237
Article
Google Scholar
Stout SD, Teitelbaum SL (1976) Histological analysis of undecalcified thin sections of archeological bone. Am J Phys Anthropol 44:263–269. https://doi.org/10.1002/ajpa.1330440208
Article
Google Scholar
Susini A, Baud CA, Lacotte D (1988) Bone apatite crystals alterations in Neolithic skeletons and their relations to burial practices and soil weathering. Rivista di antropologia 66:35–38
Google Scholar
Talsky G (1994) Derivative spectrophotometry: low and higher order. Wiley-VCH
Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:73–90. https://doi.org/10.1007/BF02013723
Article
Google Scholar
Traub W, Arad T, Weiner S (1992) Origin of mineral crystal growth in collagen fibrils. Matrix 12:251–255. https://doi.org/10.1016/S0934-8832(11)80076-4
Article
Google Scholar
Trueman CN (2013) Chemical taphonomy of biomineralized tissues. Palaeontology 56:475–486. https://doi.org/10.1111/pala.12041
Article
Google Scholar
Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739. https://doi.org/10.1016/j.jas.2003.11.003
Article
Google Scholar
Trueman CN, Privat K, Field J (2008a) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167. https://doi.org/10.1016/j.palaeo.2008.03.038
Article
Google Scholar
Trueman CN, Palmer MR, Field J, Privat K, Ludgate N, Chavagnac V, Eberth DA, Cifelli R, Rogers RR (2008b) Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. C R Palevol 7:145–158. https://doi.org/10.1016/j.crpv.2008.02.006
Article
Google Scholar
Turban-Just S, Schramm S (1998) Stable carbon and nitrogen isotope ratios of individual amino acids give new insights into bone collagen degradation. Bull Soc Geol Fr 169:109–114
Google Scholar
Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. In: Pinhasi R, Mays S (eds) Advances in human palaeopathology. Wiley, West Sussex, pp 1–29
Google Scholar
Turner-Walker G, Jans M (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235. https://doi.org/10.1016/j.palaeo.2008.03.024
Article
Google Scholar
Tuross N (2002) Alterations in fossil collagen. Archaeometry 44:427–434. https://doi.org/10.1111/1475-4754.00075
Article
Google Scholar
van Doorn NL, Wilson J, Hollund H, Soressi M, Collins MJ (2012) Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun Mass Spectrom 26:2319–2327. https://doi.org/10.1002/rcm.6351
Article
Google Scholar
van Klinken GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci 26:687–695. https://doi.org/10.1006/jasc.1998.0385
Article
Google Scholar
Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196. https://doi.org/10.1016/0305-4403(90)90058-D
Article
Google Scholar
Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375
Article
Google Scholar
Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266
Article
Google Scholar
White L, Booth TJ (2014) The origin of bacteria responsible for bioerosion to the internal bone microstructure: results from experimentally-deposited pig carcasses. Forensic Sci Int 239:92–102. https://doi.org/10.1016/j.forsciint.2014.03.024
Article
Google Scholar
White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society of Great Britain and Ireland, pp 227–284
Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143. https://doi.org/10.1016/j.msec.2005.01.008
Article
Google Scholar
Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944
Article
Google Scholar