Skip to main content

Understanding Neanderthal technological adaptation at Navalmaíllo Rock Shelter (Spain) by measuring lithic raw materials performance variability

Abstract

Navalmaíllo Rock Shelter is an Upper Pleistocene archaeological site in the Lozoya River Valley (Madrid, Spain) with a quartz-based Mousterian lithic assemblage. To understand the reasons behind an intense use of quartz over flint and quartzite, a mechanical experiment was carried out. Flakes from flint, quartzite, and local quartz were tested under controlled conditions and quantifiable variables. The mechanical action consisted in a standardised linear repetitive cutting protocol over antler and pine wood. Results allowed to differentiate flake resistance between raw materials through mass and edge angle material loss statistics. Results also showed that the edges produced on flint are sharper allowing to create deeper cuts, but the thin working edges break more easily meaning that they would need a higher maintenance by retouch. Quartzite and quartz have similar performances, but quartzite suffers a more intense modification of the edge angle, while quartz edges present a higher endurance. When compared with flint, quartzite and quartz are more suitable for those tasks where heavier force is applied. Based on that, we concluded that there was no functional disadvantage in using a quartz-based toolkit. Therefore, the quartz assemblages recovered throughout the sequence of Navalmaíllo Rock Shelter show that it was intensely explored not just because of its availability in the landscape but also for its suitability to the development of the different activities taking place at Navalmaíllo Rock Shelter such as big sized herbivore butchering, for a long time span.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Graph 1
Graph 2
Graph 3
Graph 4
Fig. 5

References

  1. Abrunhosa A, Baquedano E, Márquez B, et al (2017) Neanderthal raw material procurement strategies spatial analysis of lithic resources available in the Lozoya river valley (Madrid-Spain). Poster Presentation Number 42. 7th Annual Meeting of the European Society for the Study of Human Evolution. Leiden, The Netherlands

  2. Arriaza MC, Huguet R, Laplana C, Pérez-González A, Márquez B, Arsuaga JL, Baquedano E (2015) Lagomorph predation represented in a middle Palaeolithic level of the Navalmaíllo Rock Shelter site (Pinilla del Valle, Spain), as inferred via a new use of classical taphonomic criteria. Quat Int 436:294–306. https://doi.org/10.1016/j.quaint.2015.03.040

    Article  Google Scholar 

  3. Arsuaga JL, Baquedano E, Pérez-González A (2011) Neanderthal and carnivores occupation in Pinilla del Valle sites (Community of Madrid, Spain). In: Oosterbeek L, Fidalgo C (eds) Proceedings of the XV world congress UISPP (Lisbon, 4-9 September 2006), BAR Intern. Archaeopress, pp 4–9

  4. Aubry T, Barbosa AF, Luís L, Santos AT, Silvestre M (2015) Quartz use in the absence of flint: Middle and Upper Palaeolithic raw material economy in the Côa Valley (North-Eastern Portugal). Quat Int 424:113–129. https://doi.org/10.1016/j.quaint.2015.11.067

    Article  Google Scholar 

  5. Baquedano E, Arsuaga JL, Pérez-González A (2010) Homínidos y carnívoros: competencia en un mismo nicho ecológico pleistoceno: los yacimientos del Calvero de la Higuera en Pinilla del Valle. In: Actas de las Quintas Jornadas de Patrimonio Arqueológico en la Comunidad de Madrid. Madrid

  6. Baquedano E, Márquez B, Pérez-González A, et al (2012) Neandertales en el valle del Lozoya: los yacimientos paleolíticos del Calvero de la Higuera Pinilla del Valle, Madrid. Mainake 83–100

  7. Baquedano E, Márquez B, Laplana C et al (2014) The archaeological sites at Pinilla del Valle (Madrid, Spain). Pleistocene Holocene hunter-gatherers Iberia Gibraltar strait. Curr Archeol Rec:577–584

  8. Bicho N, Carvalho AF, González-Sainz C, Sanchidrián JL, Villaverde V, Straus LG (2007) The Upper Paleolithic Rock Art of Iberia The Upper Paleolithic Rock Art of Iberia. J Archaeol Method Theory 14:81–151. https://doi.org/10.1007/s10816-007-9025-5

    Article  Google Scholar 

  9. Brantingham PJ, Olsen JW, Rech JA, Krivoshapkin AI (2000) Raw material quality and prepared Core Technologies in Northeast Asia. J Archaeol Sci 27:255–271. https://doi.org/10.1006/jasc.1999.0456

    Article  Google Scholar 

  10. Braun DR, Pobiner BL, Thompson JC (2008) An experimental investigation of cut mark production and stone tool attrition. J Archaeol Sci 35:1216–1223. https://doi.org/10.1016/j.jas.2007.08.015

    Article  Google Scholar 

  11. Braun DR, Plummer T, Ferraro JV, Ditchfield P, Bishop LC (2009) Raw material quality and Oldowan hominin toolstone preferences: evidence raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. J Archaeol Sci 36:1605–1614. https://doi.org/10.1016/j.jas.2009.03.025

    Article  Google Scholar 

  12. Byrne L (2004) Lithic tools from Arago cave, Tautavel (Pyrénées- Orientales, France): Behavioural continuity or raw material determinism during the Middle Pleistocene? J Archaeol Sci 31:351–364. https://doi.org/10.1016/j.jas.2003.07.008

    Article  Google Scholar 

  13. Byrne F, Proffitt T, Arroyo A, de la Torre I (2015) A comparative analysis of bipolar and freehand experimental knapping products from Olduvai Gorge, Tanzania. Quat Int 424:58–68. https://doi.org/10.1016/j.quaint.2015.08.018

    Article  Google Scholar 

  14. Callahan E (1987) An evaluation of the lithic Technology in Middle Sweden during the Mesolithic and Neolithic. AUN 8 Soc Archaeol Uppsaliensis

  15. Clarkson C, Haslam M, Harris C (2015) When to retouch, haft, or discard? Modeling optimal use/maintenance schedules in lithic tool use. In. Andresky W, Goodale N (Ed). Lithic Technological Systems and Evolutionary Theory. Chapter: 7. Publisher: Cambridge University Press

  16. Daffara S, Berruti G-LF, Caracausi S, Rodríguez-Alvarez X-P, Sala-Ramos R (2018) The use of “second rate” raw materials during middle Palaeolithic. Technological and functional analysis of two sites in North-Eastern Iberia. L’Anthropologie 122(4):626–653. https://doi.org/10.1016/j.anthro.2018.09.001

    Article  Google Scholar 

  17. Dibble HL (1997) Platform variability and flake morphology: a comparison of experimental and archaeological data and implications for interpreting prehistoric lithic technological strategies. Lithic Technol 22:150–170. https://doi.org/10.1080/01977261.1997.11754540

    Article  Google Scholar 

  18. Dibble HL, Pelcin A (1995) The effect of hammer mass and velocity on flake mass. J Archaeol Sci 22:429–439. https://doi.org/10.1006/jasc.1995.0042

    Article  Google Scholar 

  19. Dibble HL, Holdaway SJ, Lin SC, et al (2016) Major Fallacies Surrounding Stone Artifacts and Assemblages

  20. Domanski M, Webb JA (1992) Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. J Archaeol Sci 19:601–614. https://doi.org/10.1016/0305-4403(92)90031-W

    Article  Google Scholar 

  21. Domanski M, Webb JA, Boland J (1994) Mechanical properties of stone artefact materials and the effect of heat treatment. Archaeometry 36:177–208

    Article  Google Scholar 

  22. Driscoll K (2011) Identifying and classifying vein quartz artefacts: an experiment conducted at the world archaeological congress, 2008. Archaeometry 53:1280–1296. https://doi.org/10.1111/j.1475-4754.2011.00600.x

    Article  Google Scholar 

  23. Driscoll K, Warren GM (2007) Dealing with “the quartz problem” in Irish lithic research. Lithics 28:4–14

    Google Scholar 

  24. Driscoll K, Alcaina J, Égüez N, Mangado X, Fullola JM, Tejero JM (2015) Trampled under foot: a quartz and chert human trampling experiment at the Cova del Parco rock shelter, Spain. Quat Int 424:1–13. https://doi.org/10.1016/j.quaint.2015.04.054

    Article  Google Scholar 

  25. Eixea A, Villaverde V, Zilhão J (2016) Not only flint: Levallois on quartzite and limestone at Abrigo de la Quebrada (Valencia, Spain): implications for neandertal behavior. J Anthropol Res 72:24–57. https://doi.org/10.1086/685265

    Article  Google Scholar 

  26. Eren MI, Lycett SJ, Roos CI, Sampson CG (2011) Toolstone constraints on knapping skill: Levallois reduction with two different raw materials. J Archaeol Sci 38:2731–2739. https://doi.org/10.1016/j.jas.2011.06.011

    Article  Google Scholar 

  27. Eren MI, Roos CI, Story BA, von Cramon-Taubadel N, Lycett SJ (2014) The role of raw material differences in stone tool shape variation: an experimental assessment. J Archaeol Sci 49:472–487. https://doi.org/10.1016/j.jas.2014.05.034

    Article  Google Scholar 

  28. Eren MI, Lycett SJ, Patten RJ, Buchanan B, Pargeter J, O'Brien MJ (2016) Test, model, and method validation: the role of experimental stone artifact replication in hypothesis-driven archaeology. Ethnoarchaeology 8:103–136. https://doi.org/10.1080/19442890.2016.1213972

    Article  Google Scholar 

  29. Fuster J, Aparicio A, Casquet C et al (1974) Interacciones entre los metamorfismos plurifaciales y polifásicos en el Sistema Central Español. Bol Geol Min 85:595–600

    Google Scholar 

  30. Gameiro C, Almeida F, Pereira T, Quelhas A (2013) O Paleolítico Superior. In: Testemunhos do Paleolítico no Regolfo do Alqueva. Resultdos do Bloco 1 do Plano de Minimização de impactes sobre o Património Arqueológico. EDIA

  31. Garcia J, Martínez K, Carbonell E (2013) The Early Pleistocene stone tools from Vallparadís (Barcelona, Spain): rethinking the European mode 1. Quat Int 316:94–114

    Article  Google Scholar 

  32. Gummesson S, Sundberg R, Knutsson H, Zetterlund P, Molin F, Knutsson K (2017) Lithic raw material economy in the Mesolithic: an experimental test of edged tool efficiency and durability in bone tool production lithic raw material economy in the mesolithic: an experimental test of edged tool efficiency and durability in bone tool. Lithic Technol 42:1–15. https://doi.org/10.1080/01977261.2017.1374584

    Article  Google Scholar 

  33. Hiscock P (2015) Making it small in the Palaeolithic: bipolar stone-working, miniature artefacts and models of core recycling. Word Archaeol:37–41. https://doi.org/10.1080/00438243.2014.991808

    Article  Google Scholar 

  34. Jaubert J (1997) L’utilisation du quartz au Paléolithique Inférieur el Moyen. Préhistoire Anthropol Méditerranéennes 6:239–258

    Google Scholar 

  35. Knutsson K (1998) Convention and lithic analysis. In: Holm L, Knutsson K (eds) Proceedings from the third Flint alternatives conference at Uppsala. Occasional Papers in Archaeology, p 16

  36. Knutsson K (2014) ‘Simple’ need not mean ‘archaic. Antiquity 88:950–953. https://doi.org/10.1017/S0003598X00050894

    Article  Google Scholar 

  37. Knutsson H, Knutsson K, Molin F, Zetterlund P (2016) From flint to quartz: organization of lithic technology in relation to raw material availability during the pioneer process of Scandinavia. Quat Int 424:32–57. https://doi.org/10.1016/j.quaint.2015.10.062

    Article  Google Scholar 

  38. de la Peña P (2015) A qualitative guide to recognize bipolar knapping for flint and quartz. Lithic Technol 40:1–16. https://doi.org/10.1080/01977261.2015.1123947

    Article  Google Scholar 

  39. de la Peña P, Wadley L, Lombard M (2013) Quartz bifacial points in the Howiesons Poort of Sibudu. South African Archaeol Bull 68:119–136

    Google Scholar 

  40. Lin SC, Pop CM, Dibble HL, Archer W, Desta D, Weiss M, McPherron SP (2016) A Core reduction experiment finds no effect of original stone size and reduction intensity on flake debris size distribution. Am Antiq 81:562–575. https://doi.org/10.1017/S0002731600004005

    Article  Google Scholar 

  41. de Lombera-Hermida A (2008) Quartz morphostructural groups and their mechanical implications. Ann dell’Università degli Stud di Ferrara Museol Sci e Nat Special Vo:

  42. de Lombera-Hermida A , Rodríguez-Rellán C (2010) Gestión y estrategias de abastecimiento de las materias primas locales (cuarz, cuarcita y pzarra) en la Prehistoria del NW Peninsular. In: Domínguez-Bella S, Muñoz JR, Gutiérrez López JM, Pérez Rodríguez M (eds) Minerales y Rocas en las sociedades de la Prehistoria. Grupo de Investigación HUM-440. Universidad de Cádiz, Cádiz, pp 49–60

  43. de Lombera-Hermida A, Rodríguez-Rellán C (2016) Quartzes matter. Understanding the technological and behavioural complexity in quartz lithic assemblages. Quat Int 424:2–11. https://doi.org/10.1016/j.quaint.2016.11.039

    Article  Google Scholar 

  44. de Lombera-Hermida A , Rodríguez XP, Fábregas-Valcarce R (2014) Cova Eirós archaeo-palaeontological site, Triacastela, Lugo. In: Pleistocene and Holocene hunter-gatherers in Iberia and the Gibraltar strait: the current archaeological record. Universidad de Burgos, Fundación Atapuerca: Burgos, p 18–25

  45. Lopez Ruiz J, Aparicio A, García L (1975) El metamorfismo de la Sierra de Guadarrama (Sistema Central Español). Mem del Inst Geológico y Min 86

  46. MacCurdy GG (1931) The use of rock crystal by Paleolithic man. Proc Natl Acad Sci 17:633–637. https://doi.org/10.1073/pnas.17.12.633

    Article  Google Scholar 

  47. Manninen MA (2016) The effect of raw material properties on flake and flake-tool dimensions: a comparison between quartz and chert. Quat Int 424:24–31. https://doi.org/10.1016/j.quaint.2015.12.096

    Article  Google Scholar 

  48. Manninen MA, Knutsson K (2014) Lithic raw material diversifiction as an adaptive strategy—technology, mobility, and site structure in late Mesolithic northermost Europe. J Anthropol Archaeol 33:84–98

    Article  Google Scholar 

  49. Márquez B, Mosquera M, Baquedano E et al (2013) Evidence of a Neanderthal-made quartz-based technology at Navalmaíllo Rockshelter. J Anthropol Res 69:373–395

    Article  Google Scholar 

  50. Márquez B, Baquedano E, Pérez-González A, Arsuaga JL (2016) Microwear analysis of Mousterian quartz tools from the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid, Spain). Quat Int 424:84–97. https://doi.org/10.1016/j.quaint.2015.08.052

    Article  Google Scholar 

  51. McPherron SP, Braun DR, Dogandžić T et al (2014) An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. J Archaeol Sci 49:70–82. https://doi.org/10.1016/j.jas.2014.04.003

    Article  Google Scholar 

  52. Moclán A, Huguet R, Márquez B, Domínguez-Rodrigo M, Gómez-Miguelsanz C, Vergès JM, Laplana C, Arsuaga JL, Pérez-González A, Baquedano E (2018) Cut marks made with quartz tools: an experimental framework for understanding cut mark morphology, and its use at the Middle Palaeolithic site of the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid, Spain). Quat Int 493:1–18. https://doi.org/10.1016/j.quaint.2018.09.033

    Article  Google Scholar 

  53. Morgado A, Lozano JA, García Sanjuán L, Triviño ML, Odriozola CP, Irisarri DL, Flores ÁF (2016) The allure of rock crystal in copper age southern Iberia: technical skill and distinguished objects from Valencia de la Concepción (Seville, Spain). Quat Int 424:232–249. https://doi.org/10.1016/j.quaint.2015.08.004

    Article  Google Scholar 

  54. Mourre V (1994) Les industries en quartz au Paléolithique Moyen. Approche technologique de séries du Sud-Ouest de la France. Anthropologie 111

  55. Mourre V (1996) Les industries en quartz au Paléolithique. Terminologie, méthodologie et technologie. Paleo 8:205–223. https://doi.org/10.3406/pal.1996.1160

    Article  Google Scholar 

  56. Nieto-Márquez IO, Baena-Preysler J (2016) Did stones speak about people? Flint catchment and Neanderthal behavior from area 3 (Cañaveral, Madrid - Spain). Quat Int 435:144–163. https://doi.org/10.1016/j.quaint.2016.01.019

    Article  Google Scholar 

  57. Ohnuma K, Aoki K, Akazawa T (1997) Transmission of tool-making through verbal and non-verbal communication: preliminary experiments in Levallois flake production. Anthropol Sci 105:159–168. https://doi.org/10.1537/ase.105.159

    Article  Google Scholar 

  58. Pargeter J, de la Penã P, Eren MI (2018a) Assessing raw material ’ s role in bipolar and freehand miniaturized flake shape , technological structure , and fragmentation rates. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-018-0647-1

    Article  Google Scholar 

  59. Pargeter J, de la Peña P, Eren MI (2018b) Assessing raw material’s role in bipolar and freehand miniaturized flake shape , technological structure, and fragmentation rates. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-018-0647-1

    Article  Google Scholar 

  60. Pelegrin J (1986) Expérimentation appliquée à l’étude technologique des haches à section quadrangulaire du Néolithique sud-Scandinave in Séance du 26 février 1986: Etudes technologiques. Boll Soc Prehistoire Française 83:70–71

  61. Pereira T, Benedetti MM (2013) A model for raw material management as a response to local and global environmental constraints. Quat Int 318:19–32. https://doi.org/10.1016/j.quaint.2013.04.011

    Article  Google Scholar 

  62. Pereira T, Martins R, Marreiros J (2014) Turning the wheel on lithic functionality. In: João Marreiros, Nuno Bicho JGB (ed) International conference on use-Wear analysis. Cambridge scholars publishing, pp 35–44

  63. Pereira T, Marreiros J, Martins R, Paixão E (2017) Mechanical experiments to test quartzite vs chert edge reduction. In: Pereira T, Terradas X, Bicho N (eds) The exploitation of raw materials in prehistory. Cambridge Scholars Publishing, pp 613–626

  64. Pérez-González A, Karampaglidis T, Arusaga JL et al (2010) Aproximación geomorfológica a los yacimientos del Pleistoceno Superior del Calvero de la Higuera en el Valle Alto del Lozoya (Sistema Central Español, Madrid). Zo Arqueol 13:403–420

    Google Scholar 

  65. Perreault C, Brantingham PJ, Kuhn SL, Wurz S, Gao X (2013) Measuring the complexity of lithic technology. Curr Anthropol 54:397–406. https://doi.org/10.1086/673264

    Article  Google Scholar 

  66. Raposo L (1996) Quartzite bifaces and cleavers in the final Achaeulian assemblage of Milharós (Alpiarça, Portugal). In: Moloney N, Raposo L, Santoja M (eds) Non-Flint stone tools and the Palaeolithic occupation of the Iberian Peninsula. BAR International Series 649, pp 151–159

  67. Rodríguez-Álvarez XP (2016) The use of quartz during the lower Palaeolithic in northeastern Iberia. Quat Int 424:69–83. https://doi.org/10.1016/j.quaint.2016.01.022

    Article  Google Scholar 

  68. Rodríguez-Rellán C (2016) Variability of the rebound hardness as a proxy for detecting the levels of continuity and isotropy in archaeological quartz. Quat Int 424:191–211. https://doi.org/10.1016/j.quaint.2015.12.085

    Article  Google Scholar 

  69. Roth BJ, Dibble HL (1998) Production and transport of blanks and tools at the French middle Paleolithic site of Combe-Capelle bas. Am Antiq 63:47–62

    Article  Google Scholar 

  70. Santonja M, Panera J, Rubio-Jara S, Pérez-González A, Uribelarrea D, Domínguez-Rodrigo M, Mabulla AZP, Bunn HT, Baquedano E (2014) Technological strategies and the economy of raw materials in the TK (Thiongo Korongo) lower occupation, bed II, Olduvai Gorge, Tanzania. Quat Int 322–323:181–208. https://doi.org/10.1016/j.quaint.2013.10.069

    Article  Google Scholar 

  71. Spott E (2005) Analysis of quartz in northern Wisconsin: deficiencies, misconceptions and goals. Nebraska Anthropol 10:115–128

    Google Scholar 

  72. Tallavaara M, Manninen MA, Hertell E, Rankama T (2010) How flakes shatter: a critical evaluation of quartz fracture analysis. J Archaeol Sci 16:2442–2448. https://doi.org/10.1016/j.jas.2010.05.005

    Article  Google Scholar 

  73. Tardy N, Vosges J, Varoutsikos B (2016) Micro-blade production on hyaline quartz during the late Neolithic of northern Greece (5400-4600 cal. B.C.): examples from Dikili Tash and Promachonas-Topolniča. Quat Int 424:212–231. https://doi.org/10.1016/j.quaint.2015.11.139

    Article  Google Scholar 

  74. de Teixeira JC, Abrunhosa MJ (2017) O Paleolítico Inferior/ Médio. O caso de Vale de Juncal. In: Pedro C. Carvalho LFCG e JNM (ed) 11. Estudo Histórico e Etnológico do Vale do Tua, Vol I. EDP, S.A., Porto

  75. Ten Bruggencate R, Fayek M, Milne B, Brownlee K (2014) Characterizing quartz artefacts: a case study from Manitoba’s northern boreal Forest. Archaeometry 56:913–926. https://doi.org/10.1111/arcm.12092

    Article  Google Scholar 

  76. Terradillos-Bernal M, Rodríguez-Álvarez X-P (2014) The influence of raw material qualities in the lithic technology of gran Dolina (units TD6 and TD10) and Galería (sierra de Atapuerca, Burgos, Spain): a view from experimental archeology. Comptes Rendus - Palevol 13:527–542. https://doi.org/10.1016/j.crpv.2014.02.002

    Article  Google Scholar 

  77. Venditti F, Tirillò J, Garcea EAA (2015) Identification and evaluation of post-depositional mechanical traces on quartz assemblages: an experimental investigation. Quat Int 424:143–153. https://doi.org/10.1016/j.quaint.2015.07.046

    Article  Google Scholar 

  78. Weiss M, Otcherednoy A, Wiśniewski A (2017) Using multivariate techniques to assess the effects of raw material, flaking behavior and tool manufacture on assemblage variability: an example from the late middle Paleolithic of the European plain. J Archaeol Sci 87:73–94. https://doi.org/10.1016/j.jas.2017.09.014

    Article  Google Scholar 

  79. Wilkins J, Brown K, Oestmo S et al (2017) Lithic technological responses to Late Pleistocene glacial cycling at pinnacle point site 5-6, South Africa. PLoS One 12:e0174051. https://doi.org/10.1371/journal.pone.0174051

    Article  Google Scholar 

  80. Yravedra J, Julien M-A, Alcaraz-Castaño M, Estaca-Gómez V, Alcolea-González J, de Balbín-Behrmann R, Lécuyer C, Marcel CH, Burke A (2016) Not so deserted … paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the last glacial maximum. Quat Sci Rev 140:21–38. https://doi.org/10.1016/j.quascirev.2016.03.021

    Article  Google Scholar 

  81. Zilhão J (1997) O Paleolítico Superior da Estremadura portuguesa. Edições Colibri

Download references

Acknowledgements

We also thank Professor Nuno Bicho for advising Ana Abrunhosa. Finally, we thank Pinilla del Valle Team for their support, Alfonso Dávila Lucio for the photographs and David M. Martín-Perea for the help during survey.

Funding

This research was conducted with the support of a doctoral grant (SFRH/BD/110511/2015) funded by Fundação para a Ciência e Tecnologia (FCT - Portuguese Science Foundation) and a Dissertation Fieldwork Grant funded by Wenner-Gren Foundation for the Project “Raw Material Procurement Strategies from Pinilla del Valle’s Neanderthals” both to Ana Abrunhosa. Telmo Pereira research is funded by Programa Investigador FCT (IF/01075/2013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Abrunhosa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Controlled experiments in lithic technology and function

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abrunhosa, A., Pereira, T., Márquez, B. et al. Understanding Neanderthal technological adaptation at Navalmaíllo Rock Shelter (Spain) by measuring lithic raw materials performance variability. Archaeol Anthropol Sci 11, 5949–5962 (2019). https://doi.org/10.1007/s12520-019-00826-3

Download citation

Keywords

  • Raw materials
  • Navalmaíllo Rock Shelter
  • Middle Palaeolithic
  • Experimental archaeology
  • Quartz