Skip to main content
Log in

First insights into Chinese reverse glass paintings gained by non-invasive spectroscopic analysis—tracing a cultural dialogue

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This work presents a technical investigation of two Chinese reverse glass paintings from the late 19th and early 20th centuries. A multi-analytical, non-invasive approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) was used to identify the pigments and classify the binding media. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The proof of limewash (calcite and small amounts of portlandite) as a backing layer in Yingying and Hongniang indicates that clamshell white was also used for reverse glass paintings. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aze S, Vallet JM, Detalle V, Grauby O, Baronnet A (2008) Chromatic alterations of red lead pigments in artwork: a review. Phase Transit 81:145–154

    Article  Google Scholar 

  • Bailey K (2012) A note on Prussian blue in nineteenth-century Canton. Stud Conserv 57(2):116–121

    Article  Google Scholar 

  • Barsan MM, Butler IS, Fitzpatrick J, Gilson DFR (2011) High pressure studies of the micro-Raman spectra of iron cyanide complexes: prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J Raman Spectrosc 42:1820–1824

    Article  Google Scholar 

  • Baumer U, Dietemann P (2010) Identification and differentiation of dragon’s blood in works of art using gas chromatography/mass spectrometry. Anal Bioanal Chem 397:1363–1376

    Article  Google Scholar 

  • Baumer U, Dietemann P, Koller J (2009) Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry. Int J Mass Spectrom 284:131–141

    Article  Google Scholar 

  • Baumer U, Fiedler I, Bretz S, Ranz HJ, Dietemann P (2012) Decorative reverse-painted glass objects from the fourteenth to twentieth centuries: an overview of the binding media. Stud Conserv 57(sup1):9–18. https://doi.org/10.1179/2047058412Y.0000000034

    Article  Google Scholar 

  • Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (Pre- ≈1850 AD). Spectrochim Acta A 53:2159–2179

    Article  Google Scholar 

  • Berger K (1980) Der Japonismus in der westlichen Malerei 1860–1920 (in German). Prestel, Munich

    Google Scholar 

  • Bersani D, Aliatis I, Tribaudino M, Mantovani L, Benisek A, Carpenter MA, Gatta GD, Lottici PP (2018) Plagioclase composition by Raman spectroscopy. J Raman Spectros 49:684–698

    Article  Google Scholar 

  • Bretz S, Baumer U, Stege H, von Miller J, von Kerssenbrock-Krosig D (2009) A German house altar from the sixteenth century: conservation and research of reverse paintings on glass. Stud Conserv 53(4):209–224

    Article  Google Scholar 

  • Buti D, Rosi F, Brunetti BG, Miliani C (2013) In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal Bioanal Chem 405:2699–2711

    Article  Google Scholar 

  • Caggiani MC, Cosentino A, Mangone A (2016) Pigments Checker version 3.0, a handy set for conservation scientists: a free online Raman spectra database. Microchem J 129:123–132

    Article  Google Scholar 

  • Cheung C, Jing Z, Tang J, Yue Z, Richards M (2017) Examining social and cultural differentiation in early Bronze Age China using stable isotope analysis and mortuary patterning of human remains at Xin’anzhuang, Yinxu. Archaeol Anthropol Sci 9(5):799–816

    Article  Google Scholar 

  • Coccato A, Jehlicka J, Vandenabeele P (2015) Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc 46:1003–1015

    Article  Google Scholar 

  • Colomban P, Zhang Y, Zhao B (2017) Non-invasive Raman analyses of Chinese huafalang and related porcelain wares. Searching for evidence for innovative pigment technologies. Ceram Int 43:12079–12088

    Article  Google Scholar 

  • Curtis EB (2009) Glass exchange between Europe and China, 1550-1800: Diplomatic, Mercantile and Technological Interactions. Ashgate, Farnham

    Google Scholar 

  • De Luca E, Poldi G, Redaelli M, Zaffino C, Bruni S (2016) Multi-technique investigation of historical Chinese dyestuffs used in Ningxia carpets. Archaeol Anthropol Sci 9(8):1789–1798

    Article  Google Scholar 

  • Eremin K, Stenger J, Huang JF, Aspuru-Guzik A, Betley T, Vogt L, Kassal I, Speakman S, Khandekar N (2008) Examination of pigments on Thai manuscripts: the first identification of copper citrate. J Raman Spectrosc 39:1057–1065

    Article  Google Scholar 

  • Feng SL, Feng XQ, Zhu JH, Xie GX, Yan LT, Li L, Li G, Shen QH (2008) Nondestructive analysis on ancient porcelain of Longquan Kiln in Zhejiang Province by WDXRF. Chinese. Phys C 32:284–288

    Google Scholar 

  • Fernández-Carrasco L, Torrens-Martín D, Morales LM, Martínez-Ramírez S (2012) Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides T (ed) Infrared Spectroscopy, Materials Science, Engineering and Technology, Intech, pp 369–382. https://doi.org/10.5772/36186

  • FitzHugh EW, Winter J, Leona M (2003) Studies using scientific methods: pigments in later Japanese paintings. Freer Gallery of Art Occasional Papers, Washington

    Google Scholar 

  • Frost RL, Martens WN, Kloprogge T (2002) Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neues JB Miner Monat 2002(10):469–480

    Article  Google Scholar 

  • Giaccai J, Winter J (2005) Chinese painting colors: history and reality. In: Jett P, Winter J, McCarthy B (eds) Scientific Research on the Pictorial Arts of Asia. Archetype Publications, London, pp 99–108

    Google Scholar 

  • Goltz D, McClelland J, Schellenberg A, Attas M, Cloutis E, Collins C (2003) Spectroscopic studies on the darkening of lead white. Appl Spectrosc 57:1393–1398

    Article  Google Scholar 

  • Grundmann G, Ivleva N, Richter M, Stege H, Haisch C (2011) The rediscovery of sublimed arsenic sulphide pigments in painting and polychromy: applications of Raman microspectroscopy. In: Spring M (ed) Studying Old Master paintings: technology and practice the National Gallery technical bulletin 30th anniversary conference postprints. Archetype Publications, London, pp 269–276

    Google Scholar 

  • Hahn O, Bretz S, Hagnau C, Ranz HJ, Wolff T (2009) Pigments, dyes, and black enamel — the colorants of reverse paintings on glass. Archaeol Anthropol Sci 1:263–271

    Article  Google Scholar 

  • Harley RD (2001) Artists’ pigments c.1600-1835, 2nd edn. Archetype Publications, London

    Google Scholar 

  • Hu Y (2018) Thirty-four years of stable isotopic analyses of ancient skeletons in China: An overview, progress and prospects. Archaeometry 60:144–156

    Article  Google Scholar 

  • Invernizzi C, Daveri A, Vagnini M, Malagodi M (2017) Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach. Anal Bioanal Chem 409:3281–3288

    Article  Google Scholar 

  • Kirmizi B, Colomban P, Quette B (2010) On-site analysis of Chinese Cloisonné enamels from 15th to 19th century. J Raman Spectrosc 41(7):780–790

    Google Scholar 

  • Lambourne L (2005) Japonisme. Cultural Crossings between Japan and the West. Phaidon Press, London

    Google Scholar 

  • Lange B (2007) Konzepte von Bild und Raum: Malerei, Bildhauerkunst, Graphik und Performances (in German). In: Lange B (ed) Vom Expressionismus bis heute. Geschichte der bildenden Kunst in Deutschland (in German), Prestel, Munich, pp 203–250

    Google Scholar 

  • Lankheit K, Kandinsky W, Marc F (1983) Briefwechsel: mit Briefen von und an Gabriele Münter und Maria Marc (in German). Piper, Munich

    Google Scholar 

  • Li Z, Wang L, Ma Q, Mei J (2014) A scientific study of the pigments in the wall paintings at Jokhang Monastery in Lhasa, Tibet, China. Herit Sci 2(1):21

    Article  Google Scholar 

  • Li T, Ji J, Zhou Z, Shi J (2017) A multi-analytical approach to investigate date-unknown paintings of Chinese Taoist priests. Archaeol Anthropol Sci 9:395–404

    Article  Google Scholar 

  • Liu L (2016) Vitreous Views: Materiality and Mediality of Glass in Qing China through a Transcultural Prism. Getty Res J 8:17–38

    Article  Google Scholar 

  • Martin P (1996) Hinterglasbilder. Europa - Asien – Afrika (in German). Staatliches Museum für Völkerkunde, Dresden, p 9

    Google Scholar 

  • Mayer R (2018) Bolihua: Chinese Reverse Glass Painting from the Mei Lin Collection. Hirmer Verlag, Munich

    Google Scholar 

  • Mernagh TP (1991) Use of the Laser Raman Microprobe for Discrimination Amongst Feldspar Minerals. J Raman Spectros 22:458–457

    Article  Google Scholar 

  • Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO2 entrapment in natural ultramarine blue. Chem Phys Lett 466:148–151

    Article  Google Scholar 

  • Miliani C, Rosi F, Daveri A, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in-situ study of artists' pigments. Appl Phys A-Mater 106:295–307

    Article  Google Scholar 

  • Monico L, Rosi F, Miliani C, Daveri A, Brunetti BG (2013) Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim Acta A 116:270–280

  • Oh MS (2006) Der Blaue Reiter und der Japonismus (in German). PhD thesis, Munich

  • Patterson JL (2016) Chinese Glass Paintings in Bangkok Monasteries. Arch Asian Art 66(2):153–185

    Article  Google Scholar 

  • Plesters J (1966) Ultramarine blue, natural and artificial. In: Roy A (ed) Artists’ pigments: A handbook of their history and characteristics, vol 2. Oxford University Press, New York, pp 37–65

  • Qu YA, Xie J, Xi XQ, Huang CJ, Yang JL (2014) Microstructure characteristics of blue-and-white porcelain from the folk kiln of Ming and Qing Dynasties. Ceram Int 40(6):8783–8790

    Article  Google Scholar 

  • Rötter C, Grundmann G, Richter M, van Loon A, Keune K, Boersma A, Rapp K (2007) Auripigment/orpiment—Studien zu dem Mineral und den künstlichen Produkten. Verlag Anton Siegl, Munich

    Google Scholar 

  • Salmen B (2008) Chinesische Bilder. Volkskunst für den “Blauen Reiter” (in German). Schloßmuseum Murnau, Murnau

    Google Scholar 

  • Salmen B (2011) “... diese zärtlichen, geistvollen Phantasien...” Die Maler des “Blauen Reiter” und Japan (in German). Schloßmuseum Murnau, Murnau

    Google Scholar 

  • Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers. J Phys Chem C 117:9693–9712

    Article  Google Scholar 

  • Steger S, Stege H, Bretz S, Hahn O (2018) Capabilities and limitations of handheld diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass. Spectrochim Acta A 195:103–112

    Article  Google Scholar 

  • Su Y, Qu L, Duan H, Tarcea N, Shen A, Popp J, Hu J (2015) Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and Painted enamels from the Imperial Palace. Spectrochim Acta A 153:165–170

    Article  Google Scholar 

  • Sultan S, Kareem K, He L, Simon S (2017) Identification of the authenticity of pigments in ancient polychromed artworks of China. Anal Methods 9:814–825

  • Tamburini D, Cartwright CR, Pullan M, Vickers H (2018) An investigation of the dye palette in Chinese silk embroidery from Dunhuang (Tang dynasty). Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-017-0592-4

  • Tite MS, Freestone IC, Wood N (2012) An investigation into the relationship between the raw materials used in the production of Chinese porcelain and stoneware bodies and the resulting microstructures. Archaeometry 54:37–55

    Article  Google Scholar 

  • Trentelman K, Stodulski L, Pavlovski M (1996) Characterization of Pararealgar and Other Light-Induced Transformation Products from Realgar by Raman Microspectroscopy. Anal Chem 68:1755–1761

    Article  Google Scholar 

  • Van Drongen PLF (2006) Sensitive plates: nineteen Chinese Paintings on Glass from the End of the Eighteenth Century. Museum Volkenkunde, Leiden, pp 1–61

    Google Scholar 

  • Wang J (2009) A search for the provenance of natural ultramarine blue as a blue pigment in ancient Chinese art. Wenbo 2009(6):396–402 (in Chinese)

    Google Scholar 

  • Wappenschmidt F (2008) Bunt leuchtende Bilder der chinesischen Volkskunst – Malereien auf Seide, Papier, Markpapier und hinter Glas (in German). In: Salmen B (ed) Chinesische Bilder. Volkskunst für den “Blauen Reiter” (in German). Schloßmuseum Murnau, Murnau

    Google Scholar 

  • Winter J (1984) Natural adhesives in East Asian paintings. Stud Conserv 29(sup1):117–120. https://doi.org/10.1179/sic.1984.29.Supplement-1.117

    Article  Google Scholar 

  • Wise D, Wise A (1998) Observations on nineteenth-century Chinese pigments with special reference to copper greens. In: Eagan J (ed) IPC Conference Papers, 6–9 April 1997. Institute of Paper Conservation, London, pp 125–136

    Google Scholar 

  • Yang B, Li G, Qu L, Zhao C, Ma H, Ma Q, Chen K (2017) Qinggong Caihui Bolihua Chubu Kexue Fenxi Yanjiu (清宫彩绘玻璃画初步科学分析研究). Zhongguo Wenwu Kexue Yanjiu (中国文物科学研究) 2017(3):72–79 (in Chinese)

    Google Scholar 

  • Yu F (1988) Chinese painting colours: studies of their preparation and application in traditional and modern times (trans., J. Silbergeld and A. McNair). University of Washington Press, Washington

    Google Scholar 

  • Zeng QG, Zhang GX, Leung CW, Zuo J (2010) Studies of wall painting fragments from Kaiping Diaolou by SEM/EDX, micro Raman and FT-IR spectroscopy. Microchem J 96:330–336

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Sebastian Simon and Birgit Meng for providing us reference material and background information on limewash and portlandite. We are grateful to Heike Stege for helpful comments on the manuscript.

Funding

The project “Hinterglasmalerei als Technik der Klassischen Moderne 1905–1955” is funded by the Volkswagen-Stiftung, Hannover “Forschung in Museen” reference 89921.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Steger or Rupprecht Mayer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steger, S., Oesterle, D., Mayer, R. et al. First insights into Chinese reverse glass paintings gained by non-invasive spectroscopic analysis—tracing a cultural dialogue. Archaeol Anthropol Sci 11, 4025–4034 (2019). https://doi.org/10.1007/s12520-019-00799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-019-00799-3

Keywords

Navigation