Skip to main content
Log in

Rock-magnetic and color characteristics of archaeological samples from burnt clay from destructions and ceramics in relation to their firing temperature

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Determination of ancient firing temperatures of archaeological pottery is a widely discussed topic in archaeometry. Here, a set of magnetic characteristics (magnetic susceptibility, isothermal and anhysteretic remanences, hysteresis parameters) and color parameters were studied for a collection of pottery fragments and burnt clay from house destructions. The results show that magnetite and hematite of superparamagnetic to single domain grain size are the main iron oxides produced during heating. Hematite fraction is more important and frequently detected in pottery sherds than in burnt clay from destructions. An inverse linear regression was obtained between the estimated firing temperature and the ratio value/chroma, which is shown to be site specific for pottery samples. For burnt house destructions, the regression is less well constrained and most probably reflects differences in the raw material. Consideration of rock-magnetic parameters against firing temperature estimates reveals a direct link between saturation magnetization and ancient firing temperature for burnt clay from house destructions. In contrast, this link is inverse and worse defined for pottery materials. This different behavior is attributed to different prevailing processes of iron oxide transformations in burnt clay and pottery, related to the specific firing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aidona E, Polymeris GS, Camps P, Kondopoulou D, Ioannidis N, Raptis K (2018) Archaeomagnetic versus luminescence methods: the case of an Early Byzantine ceramic workshop in Thessaloniki, Greece. Archaeol Anthropol Sci 10:725–774

    Article  Google Scholar 

  • Barrón V, Torrent J (1986) Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. Eur J Soil Sci 37:499–510

    Article  Google Scholar 

  • Beatrice C, Coïsson M, Ferrara E, Olivetti ES (2008) Relevance of magnetic properties for the characterisation of burnt clays and archaeological tiles. Phys Chem Earth 33:458–464

    Article  Google Scholar 

  • Bozhinova E, Hristeva S (2014) Plovdiv during Classical period. Archaeological researches on 22 “Graf Ignatiev” Str. In: Tonkova M, Nechrizov G (eds) Problems and investigations of the Thracian culture, pp 132–159 in Bulgarian

    Google Scholar 

  • Bozhinova E, Hristeva S (2016) Philippopolis during the early Hellenistic period according archaeological data. In: Stoyanov T, Stoyanova D (eds) Problems and investigations of the Thracian culture. Vol. 8. Veliko Tarnovo, pp 159–195 in Bulgarian

    Google Scholar 

  • Brami, M. (2014). House-related practices as markers of the Neolithic expansion from Anatolia to the Balkans. Bulgarian E-J Archaeol 4 : 161–177

  • Carrancho Á, Villalaín JJ (2011) Different mechanisms of magnetisation recorded in experimental fires: archaeomagnetic implications. Earth Planet Sci Lett 312:176–187

    Article  Google Scholar 

  • Carrancho Á, Morales J, Goguitchaichvili A, Alonso R, Terradillos M (2014) Thermomagnetic monitoring of lithic clasts burned under controlled temperature and field conditions. Implications for archaeomagnetism. Geofis Int 53(4):473–490

    Google Scholar 

  • Chohadzhiev, A. (2019). To rise a tell and raise it well. Some odd regularities of the early Chalcolithic construction techniques and the building strategies in Tell Petko Karavelovo. In: Prehistoric houses in the Balkans: profane and sacred contexts (sixth to fifth millennium BC). Studia Praehistorica, 15

  • Cornell R, Schwertmann U (2003) The iron oxides. Structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • Dearing JA, Dann RJL, Hay K, Lees JA, Loveland PJ, Maher BA, O'Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124:228–240

    Article  Google Scholar 

  • Dearing, J.(1999). Magnetic susceptibility. In: Walden, J., Oldfield, F., Smith, J. (Eds.), Environmental magnetism. A practical guide. Technical guide no 6. Quaternary Research Association, London, Chapter 4: 35–62

  • De Bonis A, Cultrone G, Grifa C, Langella A, Leone AP, Mercurio M, Morra V (2017) Different shades of red: the complexity of mineralogical and physicochemical factors influencing the colour of ceramics. Ceram Int 43:8065–8074

    Article  Google Scholar 

  • Dunlop, D.J., Özdemir, Ö. (1997). Rock magnetism: fundamentals and frontiers, 573 pp., Cambridge University Press, New York, London and Cambridge

  • Eramo G, Maggetti M (2013) Pottery kiln and drying oven from Aventicum (2nd century AD, Ct. Vaud, Switzerland): raw materials and temperature distribution. Appl Clay Sci 82:16–23

    Article  Google Scholar 

  • Evans, M. E., Heller, F. (2003). Environmental magnetism: principles and applications of Enviromagnetics, Paris, Academic Press, International Geophysics Series, 299 pp,

  • Frank U, Nowaczyk NR (2008) Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophys J Int 175:449–461

    Article  Google Scholar 

  • Gergova, D., Ivanov, Y., Dermendjiev, G., Radoslavova, G., Tankova, V., Hristova, R. (2010). Spasitelni razkopki na obekt 36, AM Trakia, LOT 4 pri s. Dragantzi, obshtina Karnobat – AOP 2009, Sofia: 119–123

  • Gómez-Paccard M, McIntosh G, Chauvin A, Beamud E, Pavón-Carrasco FJ, Thiriot J (2012) Archaeomagnetic and rock magnetic study of six kilns from North Africa (Tunisia and Morocco). Geophys J Int 189:169–186

    Article  Google Scholar 

  • Goodwin WA, Hollenback KL (2016) Assessing techniques for the estimation of original firing temperatures of plains ceramics: experimental and archaeological results. Ethnoarchaeology 8(2):180–204

    Article  Google Scholar 

  • Gosselain OP (1992) Bonfire of enquiries. Pottery firing temperatures in archaeology: what for? J Archaeol Sci Rep 19:243–260

    Article  Google Scholar 

  • Grigorov V, Todorova L (2014) Statistical analysis of the household ware of ‘palace Centre-East’ site in Pliska (first stage). Bulgarian E-J Archaeol 4(1):1–34

    Google Scholar 

  • Hervé G, Schnepp E, Chauvin A, Lanos P, Nowaczyk N (2011) Archaeomagnetic results on three Early Iron age salt-kilns from Moyenvic (France). Geophys J Int 185:144–156

    Article  Google Scholar 

  • Jordanova, N. (2016). Soil magnetism. Applications in pedology, environmental science and agriculture, . 1st Edition, Academic Press (Elsevier), 2016 ISBN:9780128092392, 466 pp.

  • Jordanova, N. and Kovacheva, M. (1998). Dating the fire in Kajmenska Chuka by the archaeomagnetic method. In: The steps of James H. Gaul, M. Stefanovich, H. Todorova, H. Hauptmann (eds.), Series, 1, Sofia, BAS: 339–347

  • Jordanova N, Kovacheva M, Kostadinova M (2004) Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovachevo) from Bulgaria. Phys Earth Planet Inter 147:89–102

    Article  Google Scholar 

  • Jordanova N, Jordanova D, Kostadinova-Avramova M, Lesigyarski D, Nikolov V, Katsarov G, Bacvarov K (2018) A mineral magnetic approach to determine paleofiring temperatures in the Neolithic settlement site of Mursalevo-Deveboaz (SW Bulgaria). J Geophys Res Solid Earth 123(4):2522–2538

  • Karacic S, Jameson M, Weil AB (2016) A burning issue: firing temperatures and the production of Late Bronze Age pottery from Tarsus-Gözlükule, Turkey. J Archaeol Sci Rep 9:599–607

    Google Scholar 

  • Kostadinova-Avramova M, Kovacheva M (2015) Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials. Geophys J Int 203:588–604

    Article  Google Scholar 

  • Kostadinova-Avramova M, Jordanova N, Jordanova D, Grigorov V, Lesigyarski D, Dimitrov P, Bozhinova E (2018) Firing temperatures of ceramics from Bulgaria determined by rock-magnetic studies. J Archaeol Sci Rep 17:617–633

    Google Scholar 

  • Kovacheva M, Kostadinova-Avramova M, Jordanova N, Lanos P, Boyadzhiev Y (2014) Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia. Phys Earth Planet Inter 236:79–94

    Article  Google Scholar 

  • Lantes-Suárez O, Prieto B, Prieto-Martínez MP, Ferro-Vázquez C, Martínez-Cortizas A (2015) The colour of ceramics from bell beaker contexts in NW Spain: relation to elemental composition and mineralogy. J Archaeol Sci 54:99–109

    Article  Google Scholar 

  • Lesigyarski, D., Kostadinova-Avramova, M., Jordanova, N., Bozhinova, E., in press. Clay source and firing temperatures of Roman ceramics: a case study from Plovdiv, Bulgaria. Geoarchaeology

  • Linford N, Platzman E (2004) Estimating the approximate firing temperature of burnt archaeological sediments through an unmixing algorithm applied to hysteresis data. Phys Earth Planet Inter 147:197–207

    Article  Google Scholar 

  • Liu, Q., Roberts, A., Larrasoaña, J., Banerjee, S., Guyodo, Y., Tauxe, L., Oldfield, F. (2012). Environmental magnetism: principles and applications. Rev Geophys, 50, RG4002

  • Livingstone Smith A (2001) Bonfire II: the return of pottery firing temperatures. J Archaeol Sci Rep 28:991–1003

    Article  Google Scholar 

  • Lugassi R, Ben-Dor E, Eshel G (2010) A spectral-based method for reconstructing spatial distributions of soil surface temperature during simulated fire events. Remote Sens Environ 114:322–331

    Article  Google Scholar 

  • Madeira J, Bedidi A, Cervelle B, Pouget M, Flay N (1997) Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a thematic mapper (TM) image for soil-mapping in Brasilia, Brazil. Int J Remote Sens 18:2835–2852

    Article  Google Scholar 

  • Maher B (1988) Magnetic properties of some synthetic sub-micron magnetites. Geophys J Int 94:83–96

    Article  Google Scholar 

  • Maher B, Thompson R (1999) Quaternary climates, environments and magnetism. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maggetti M, Neururer C, Ramseyer D (2011) Temperature evolution inside a pot during experimental surface (bonfire) firing. Appl Clay Sci 53:500–508

    Article  Google Scholar 

  • Mangueira GM, Toledo R, Teixeira S, Franco RWA (2013) Evaluation of archeothermometric methods in pottery using electron paramagnetic resonance spectra of iron. Appl Clay Sci 86:70–75

    Article  Google Scholar 

  • Maniatis Y, Simopoulos A, Kostikas A (1981) Mössbauer study of the effect of calcium content on iron oxide transformations in fired clays. J Am Ceram Soc 64(5):263–269

    Article  Google Scholar 

  • Maritan L, Mazzoli C, Nodari L, Russo U (2005) Second Iron Age grey pottery from Este (northeastern Italy): study of provenance and technology. Appl Clay Sci 29:31–44

    Article  Google Scholar 

  • Maritan L, Nodari L, Mazzoli C, Milano A, Russo U (2006) Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Appl Clay Sci 31:1–15

    Article  Google Scholar 

  • Matau F, Nica V, Postolache P, Ursachi I, Cotiuga V, Stancu A (2013) Physical study of the Cucuteni pottery technology. J Archaeol Sci 40:914–925

    Article  Google Scholar 

  • Mirti P, Davit P (2004) New developments in the study of ancient pottery by colour measurement. J Archaeol Sci 31:741–751

    Article  Google Scholar 

  • Molera J, Pradell T, Vendrell-Saz M (1998) The colours of Ca-rich ceramic pastes: origin and characterization. Appl Clay Sci 13:187–202

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Bisbikou K (1995) Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochim Acta 269-270:743–753

    Article  Google Scholar 

  • Mullins CE, Tite MS (1973) Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblies of magnetite and maghemite. J Geophys Res 78:804–809

    Article  Google Scholar 

  • Murad E, Wagner U (1998) Clays and clay minerals: the firing process. Hyperfine Interact 117(1–4):337–356

    Article  Google Scholar 

  • Nikolov V. (1990). Die neolithische Siedlung Slatina in Sofia (Ausgrabungen im Jahre 1985). Studia praehistorica 10: 77–85

  • Nodari L, Marcuz E, Maritan L, Mazzoli C, Russo U (2007) Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. J Eur Ceram Soc 27:4665–4673

    Article  Google Scholar 

  • Rada Torres MA, Costanzo-Álvarez V, Aldana M, Suárez N, Campos C, Mackowiak-Antczak MM, Brandt MC (2010) Rock magnetic, petrographic and dielectric characterization of prehistoric Amerindian potsherds from Venezuela. Stud Geophys Geod 55:717–736

    Article  Google Scholar 

  • Rasmussen KL, De La Fuente G, Bond A, Mathiesen K, Vera S (2012) Pottery firing temperatures: a new method for determining the firing temperature of ceramics and burnt clay. J Archaeol Sci 39:1705–1716

    Article  Google Scholar 

  • Salaoru T, Matau F, Tascua S, Curecheriu L, Stancu A (2013) Effect of thermal treatment on the magnetic properties of ceramic samples from eastern Romania clay deposits. Dig J Nanomater Biostruct 8(1):335–346

    Google Scholar 

  • Scalenghe R, Barello F, Saiano F, Ferrara E, Fontaine C, Caner L, Olivetti E, Boni I, Petit S (2015) Material sources of the Roman brick-making industry in the I and II century A.D. from Regio IX, Regio XI and Alpes Cottiae. Quat Int 357:189–206

    Article  Google Scholar 

  • Scheinost A, Chavernas A, Barrón V, Torrent J (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clay Clay Miner 46(5):528–536

    Article  Google Scholar 

  • Spassov S, Hus J (2006) Estimating baking temperatures in a Roman pottery kiln by rock magnetic properties: implications of thermochemical alteration on archaeointensity determinations. Geophys J Int 167:592–604

    Article  Google Scholar 

  • Spassov R, Petkov V (2015) Rescue archaeological survey of site no 16 AM Struma, LOT 2, km 351+780-km 351+970. Archaeological discoveries and excavations in 2014. Sofia:54–56

  • Stevanović M (1997) The age of clay? The social dynamics of house destruction. J Anthropol Archaeol 16:334–395

    Article  Google Scholar 

  • Tauxe L, Mullender TAT, Pick T (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J Geophys Res 101:571–583

    Article  Google Scholar 

  • Tema E, Ferrara E, Camps P, Conati Barbaro C, Spatafora S, Carvallo C, Poidras T (2016) The Earth's magnetic field in Italy during the Neolithic period: new data from the early Neolithic site of Portonovo (Marche, Italy). Earth Planet Sci Lett 448:49–61

    Article  Google Scholar 

  • Tema, E., Ferrara, E. (in press). Magnetic measurements as indicator of the equivalent firing temperature of ancient baked clays: new results, limits and cautions. Journal of Cultural Heritage

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London, p 227

    Book  Google Scholar 

  • Tite MS, Kilikoglou V, Vekinis G (2001) Strength, toughness and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry 43(3):301–324

    Article  Google Scholar 

  • Torrent, J. and Barrón, V. (2008). Diffuse reflectance spectroscopy. In: Methods of soil Análisis, part 5- mineralogical methods. . (a.L. Ulery & R. drees, editors), soil science Society of America. SSSABook series, no 5. Madison, Wi

  • Tringham R (2013) Destruction of places by fire: domicide or domithanasia. In: Driessen J (ed) Destruction: archaeological, philological, and historical perspectives. Presses Universitaires de Louvain, Louvain, pp 89–108

    Google Scholar 

  • Valanciene V, Siauciunas R, Baltusnikaite J (2010) The influence of mineralogical composition on the colour of clay body. J Eur Ceram Soc 30:1609–1617

    Article  Google Scholar 

  • Wagner F, Wagner U (2004) Mössbauer spectra of clays and ceramics. Hyperfine Interact 154:35–82

    Article  Google Scholar 

  • Wagner U, Gebhard R, Grosse G, Hutzelmann T, Murad E, Riederer J, Shimada I, Wagner FE (1998) Clay: an important raw material for prehistoric man. Hyperfine Interact 117(1–4):323–335

    Article  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science. Concepts and methods. In: Quantitative data and formulae, 2nd edn. A Wiley-Interscience Publication , John Wiley & Sons, New York

    Google Scholar 

  • Wondafrash TT, Sancho IM, Miguel VG, Serrano RE (2005) Relationship between soil color and temperature in the surface horizon of Mediterranean soils: a laboratory study. Soil Sci 170(7):495–503

    Article  Google Scholar 

  • Zhang Y, Guo Z, Deng C, Zhang S, Wu H, Zhang C, Ge J, Zhao D, Li Q, Song Y, Zhu R (2014) The use of fire at Zhoukoudian: evidence from magnetic susceptibility and color measurements. Chin Sci Bull 59(10):1013–1020

    Article  Google Scholar 

Download references

Acknowledgements

We thank the archaeologists Dr. E. Bozhinova and Dr. V. Grigorov for selecting and providing pottery samples. Comments of the two anonymous reviewers helped to improve the manuscript.

Funding

This study is funded by the grant DFNI K02/13 from the Bulgarian National Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neli Jordanova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 27 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordanova, N., Jordanova, D., Barrón, V. et al. Rock-magnetic and color characteristics of archaeological samples from burnt clay from destructions and ceramics in relation to their firing temperature. Archaeol Anthropol Sci 11, 3595–3612 (2019). https://doi.org/10.1007/s12520-019-00782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-019-00782-y

Keywords

Navigation