Advertisement

Geochemical characterisation of pozzolanic obsidian glasses used in the ancient mortars of Nora Roman theatre (Sardinia, Italy): provenance of raw materials and historical–archaeological implications

  • Stefano Columbu
  • Anna Maria Garau
  • Carlo Lugliè
Original Paper

Abstract

The study focused on the volcanic glass used in the production of bedding mortars and concrete of the Roman theatre (I cent. AD) of the Nora site. The volcanic glasses were frequently used as aggregate and with pozzolanic function in all hydraulic mortars of the different sectors of the building (e.g., concretes of tribunalia vaults and external niches, jointing and foundation mortars of cavea tier ashlars, brick bedding), together with mainly quartz-feldspar sands, local Oligo-Miocenic andesitic-dacitic volcanics and Palaeozoic and Tyrrhenian sedimentary rocks. These volcanic glasses show characteristics closer to obsidian than to natural pozzolan normally used in the Roman period. They have definitely not sourced locally, unlike the other components that make up the aggregate. To identify their provenance, a petrochemical comparison between several samples taken from the theatre mortars and the volcanic outcrops of some probable Sardinian source areas is made. The use of the not local pozzolanic glass is a technical innovation in the mortars of the Nora archaeological site, and considering the wide use of obsidians in the prehistoric periods for the production of tools, significant considerations about its origin, procurement and use are made.

Keywords

Pozzolan Obsidian glass Chemical analysis Aggregate Mt. Arci Sardinian Neolithic 

Notes

Acknowledgments

Special thanks to the University of Cagliari for funding this research; the Superintendence for Archaeological Heritage for the Provinces of Cagliari and Oristano for authorization to sample the materials from the monument; and the staff and tourist guides of the archaeological site of Nora for their willingness regarding the study activities of the Roman theatre.

References

  1. AA.VV (2000) In: Tronchetti C (ed) Ricerche su Nora—I (anni 1990–1998). Sainas Ed, CagliariGoogle Scholar
  2. Adam JP (2006) L’arte di costruire presso i Romani, materiali e tecniche vol 10. LonganesiGoogle Scholar
  3. Adriano P, Santos Silva A, Veiga R, Mirão J, Candeias AE (2009) Microscopic characterization of old mortars from Santa Maria Church in Évora. Mater Charact 60(7):610–620CrossRefGoogle Scholar
  4. Advokaat EL, Van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, Schroeder R, Madani H, Columbu S (2014) Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet Sci Lett 401:183–195CrossRefGoogle Scholar
  5. Alvarez JI, Navarro I, Martin A, Garcia Casado PJ (2000) A study of the ancient mortars in the north tower of Pamplona’s San Cernin Church. Cem Concr Res 30:1413–1419CrossRefGoogle Scholar
  6. Anders E, Grevesse N (1989) Abundances of the elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  7. Antonelli F, Columbu S, De Vos Raaijmakers M, Andreoli M (2014a) An archaeometric contribution to the study of ancient millstones from the Mulargia area (Sardinia, Italy) through new analytical data on volcanic raw material and archaeological items from Hellenistic and Roman North Africa. J Archaeol Sci 50:243–261CrossRefGoogle Scholar
  8. Antonelli F, Columbu S, Lezzerini M, Miriello D (2014b) Petrographic characterization and provenance determination of the white marbles used in the Roman sculptures of Forum Sempronii (Fossombrone, Marche, Italy). Appl Physics A 115:1033–1040CrossRefGoogle Scholar
  9. Balmuth MS (1992) Archaeology in Sardinia. American Journal of Archaeology 96(4):663–697.CrossRefGoogle Scholar
  10. Barca D, De Francesco AM, Crisci GM (2007) Application of laser ablation ICP-MS for characterization of obsidian fragments from peri-Tyrrhenian area. J Cult Herit 8(2):141–150CrossRefGoogle Scholar
  11. Beccaluva L, Macciotta G, Manetti P, Peccerillo A, Poli G (1984) Pliocene–Quaternary alkaline to subalkaline volcanism in Sardinia: magma genesis and evolution. Dip. Sc. Terra, Firenze, p 50Google Scholar
  12. Beccaluva L, Civetta L, Macciotta G, Ricci CA (1985) Geochronology in Sardinia: results and problems. Rend Soc It Min Petr 40:57–72Google Scholar
  13. Beccaluva L, Brotzu P, Macciotta G, Morbidelli L, Serri G, Traversa G (1989) Cainozoic tectono-magmatic evolution and inferred mantle sources in the Sardo-Tyrrenian area. In: Boriani A, Bonafede M, Piccardo GB, Vai GB (Eds.) The lithosphere in Italy. Advances in earth science research. Atti Conv. Acc. Naz. Lincei, vol 80, pp 229–248Google Scholar
  14. Beccaluva L, Coltorti M, Galassi B, Macciotta G, Siena F (1994) The Cainozoic calcalkaline magmatism of the western mediterranean and its geodynamic significance. Boll. di Geofisica Teorica e Applicata 36(141–144):293–308Google Scholar
  15. Beccaluva L, Bianchini G, Coltorti M, Siena F, Verde M (2005a) Cenozoic tectono-magmatic evolution of the central-western Mediterranean: migration of an arc–interarc basin system and variations in the mode of subduction. In: Finetti I (Ed.) Elsevier special volume, “crop project—deep seismic exploration of the Central Mediterranean and Italy”, pp 623–640Google Scholar
  16. Beccaluva L, Bianchini G, Bonadiman C, Coltorti M, Macciotta G, Siena F, Vaccaro C (2005b) Within-plate Cenozoic volcanism and lithospheric mantle evolution in the western-central Mediterranean area. In: Finetti I. (Ed.) Elsevier special volume, “crop project—deep seismic exploration of the Central Mediterranean and Italy”, pp 641–664Google Scholar
  17. Beccaluva L, Bianchini G, Natali C, Siena F (2011) Geodynamic control on orogenic and anorogenic magmatic phases in Sardinia and Southern Spain: inferences for the Cenozoic evolution of the western Mediterranean. Lithos 123:218–224CrossRefGoogle Scholar
  18. Bejor G (1999) L’area del teatro. In: Tronchetti C (ed) AA. VV. Ricerche su Nora-I (anni 1990–1998). Sainas Ed, CagliariGoogle Scholar
  19. Bertorino G, Franceschelli M, Marchi M, Luglié C, Columbu S (eds) (2002) Petrographic characterisation of polished stone axes from Neolithic Sardinia, archaeological implications. Per. Mineral., Special Issue: Archaeometry and Cultural Heritage 71:87–100Google Scholar
  20. Bianchini G, Marrocchino E, Vaccaro C (2004) Chemical and mineralogical characterisation of historic mortars in Ferrara (NE, Italy). Cem Concr Res 34(8):1471–1475CrossRefGoogle Scholar
  21. Bultrini G, Fragala I, Ingo GM, Lanza G (2006) Minero-petrographic, thermal and microchemical investigation of historical mortars used in Catania (Sicily) during the XVII century A.D. Appl Physics A 83(4):529–536CrossRefGoogle Scholar
  22. Cagnana A (2000) Archeologia dei materiali da costruzione. SAP Società Archeologica S.r.l., MantovaGoogle Scholar
  23. Cherchi A, Mancin N, Montadert L, Murru M, Putzu MT, Schiavinotto F, Verrubbi V (2008) The stratigraphic response to the Oligo-Miocene extension in the western Mediterranean from observations on the Sardinia graben system (Italy). Bull Soc Geol Fr 179:267–287CrossRefGoogle Scholar
  24. Cioni R, Macciotta G, Marchi M, Padalino G, Simeone R, Palomba M (2001) Water–rock interaction in genesis of perlite at Monte Arci volcanic complex (West Sardinia, Italy). In: Cidu (ed) Water–rock interaction 2001. Swets & Zeitlinger, Lisse, pp 693–696Google Scholar
  25. Colby JW (1971) Magic IV: a computer program for quantitative electron microprobe analysis. Bell Telephone Laboratories Inc., AllentownGoogle Scholar
  26. Columbu S (2017) Provenance and alteration of pyroclastic rocks from the Romanesque Churches of Logudoro (north Sardinia, Italy) using a petrographic and geochemical statistical approach. Appl Phys A Mater Sci Process 123 (3)(165):1–28.  https://doi.org/10.1007/s00339-017-0790-z Google Scholar
  27. Columbu S (2018) Petrographic and geochemical investigations on the volcanic rocks used in the Punic-Roman archaeological site of Nora (Sardinia, Italy). Earth Environmental Sciences, in pressGoogle Scholar
  28. Columbu S, Garau AM (2017) Mineralogical, petrographic and chemical analysis of geomaterials used in the mortars of Roman Nora theatre (south Sardinia, Italy). Ital J Geosci 136(2):238–262CrossRefGoogle Scholar
  29. Columbu S, Verdiani G (2014) Digital survey and material analysis strategies for documenting, monitoring and study the Romanesque churches in Sardinia, Italy. In: Lecture notes in computer science, vol 8740. Springer, pp 446–453Google Scholar
  30. Columbu S, Garau AM, Macciotta G, Marchi M, Marini C, Carboni D, Ginesu S, Corazza G (2011) Manuale sui materiali lapidei vulcanici della Sardegna centrale e dei loro principali impieghi nel costruito. Iskra Edizioni, Ghilarza, p 302Google Scholar
  31. Columbu S, Antonelli F, Lezzerini M, Miriello D, Adembri B, Blanco A (2014a) Provenance of marbles used in the Heliocaminus Baths of Hadrian's Villa (Tivoli, Italy). J Archaeol Sci 49:332–342CrossRefGoogle Scholar
  32. Columbu S, Gioncada A, Lezzerini M, Marchi M (2014b) Hydric dilatation of ignimbritic stones used in the church of Santa Maria di Otti (Oschiri, northern Sardinia, Italy). Ital J Geosci 133:149–160CrossRefGoogle Scholar
  33. Columbu S, Cruciani G, Fancello D, Franceschelli M, Musumeci (2015a) Petrophysical properties of a granite-protomylonite-ultramylonite sequence: insight from the Monte Grighini shear zone, central Sardinia, Italy. Eur J Mineral 27(4):471–486CrossRefGoogle Scholar
  34. Columbu S, Sitzia F, Verdiani G (2015b) Contribution of petrophysical analysis and 3D digital survey in the archaeometric investigations of the Emperor Hadrian’s Baths (Tivoli, Italy). Rendiconti Lincei 26(4):455–474CrossRefGoogle Scholar
  35. Columbu S, Lisci C, Sitzia F, Buccellato G (2017a) Physical-mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy). Environ Earth Sci 76(4):148.  https://doi.org/10.1007/s12665-017-6455-6 CrossRefGoogle Scholar
  36. Columbu S, Sitzia F, Ennas G (2017b) The ancient pozzolanic mortars and concretes of Heliocaminus baths in Hadrian’s Villa (Tivoli, Italy). Archaeol Anthropol Sci 9:523–553CrossRefGoogle Scholar
  37. Columbu S, Antonelli F, Sitzia F (2018a) Origin of Roman worked stones from St. Saturno Christian Basilica (south Sardinia, Italy). Mediterranean Archaeology and Archaeometry, in pressGoogle Scholar
  38. Columbu S, Piras G, Sitzia F, Pagnotta S, Raneri S, Legnaioli S, Palleschi V, Lezzerini M, Giamello M (2018b) Petrographic and mineralogical characterization of volcanic rocks and surface-depositions on Romanesque monuments. Mediterranean Archaeology and Archaeometry, in pressGoogle Scholar
  39. Columbu S, Palomba M, Sitzia F, Murgia MR (2018c) Geochemical, mineral-petrographic and physical-mechanical characterization of stones and mortars from the Romanesque Saccargia Basilica (Sardinia, Italy) to define their origin and alteration. Ital J Geosci 137(3):1-27. DOI: https://doi.org/10.3301/IJG.2018.04Google Scholar
  40. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin, London, p 450CrossRefGoogle Scholar
  41. Criss JW (1977) NRLXRF: a fortran program for X-ray fluorescence analysis. Cosmic, AthensGoogle Scholar
  42. Cross W, Iddings JP, Pirsson LV, Washington HS (1903) Quantitative classification of igneous rocks. University of Chicago PressGoogle Scholar
  43. De Francesco AM, Crisci GM, Bocci M (2008) Non-destructive analytic method using XRF for determination of provenance of archaeological obsidians from the mediterranean area: a comparison with traditional XRF methods. Archaeometry 50(2):337–350CrossRefGoogle Scholar
  44. De Francesco AM, Bocci M, Crisci GM (2011) Non-destructive applications of wavelength XRF in obsidian studies. X-ray fluorescence spectrometry (XRF) in geoarchaeology:81–107Google Scholar
  45. De La Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1–R2 diagram and major-element analyses—its relationships with current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  46. De Luca R, Cau Ontiveros MA, Miriello D, Pecci A, Le Pera E, Bloise A, Crisci GM (2013) Archaeometric study of mortars and plasters from the Roman City of Pollentia (Mallorca-Balearic Islands). Per Mineral 82:353–379Google Scholar
  47. De Luca R, Miriello D, Pecci A, Domìnguez-Bella S, Bernal-Casasola D, Cottica D, Bloise A, Crisci GM (2015) Archaeometric study of mortars from the Garum Shop at Pompeii, Campania, Italy. Geoarchaeology 30:330–351CrossRefGoogle Scholar
  48. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62(4):344–359CrossRefGoogle Scholar
  49. Folk RL (1968) Petrology of sedimentary rocks. Hemphill’s Austin, TexasGoogle Scholar
  50. Franzini M, Leoni L, Saitta M (1975) Revisione di una metologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Soc. It. Min. Petrol.—Rendiconti 31(2):365–378Google Scholar
  51. Franzini M, Leoni L, Lezzerini M, Sartori F (2000) The mortar of the “Leaning Tower” of Pisa: the product of a medieval technique for preparing high-strength mortars. Eur J Mineral 12:1151–1163CrossRefGoogle Scholar
  52. Freund KP (2014) Obsidian consumption in Chalcolithic Sardinia: a view from Bingia ’e Monti. J Archaeol Sci 41:242–250CrossRefGoogle Scholar
  53. Freund KP, Batist Z (2014) Sardinian obsidian circulation and early maritime navigation in the Neolithic as shown through social network analysis. Journal of Island and Coastal Archaeology 9(3):364–380CrossRefGoogle Scholar
  54. Ghiotto AR (2004) L'architettura romana nelle città della Sardegna. Edizioni Quasar, Roma, p 268Google Scholar
  55. Giuliani Cairoli F (2006) L’edilizia nell’antichità. Carocci, RomaGoogle Scholar
  56. Gutiérrez GMA, Plumed HR, Soutelo SG, Savin MC, Lapuente P, Chapoulie R (2016) The marble of O Incio (Galicia, Spain): quarries and first archaeometric characterisation of a material used since roman times. ArcheoSciences (40, 1):103–117Google Scholar
  57. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  58. Kuno H (1968) Differentiation of basalt magma. In: Hess H, Poldervaart A (eds) The Poldervaart treatise on rocks of basaltic composition, vol II. Wiley & Sons, New York, pp 623–688Google Scholar
  59. Lapuente P (2014a) Archaeometry on stones. Multi-method approach to investigate stone provenance. studied cases from Roman Hispanic marmora. Archeometriai Műhely (1786-271X) 11(3):149–158Google Scholar
  60. Lapuente P (2014b) White marble sculptures from the National Museum of Roman Art (Mérida, Spain): sources of local and imported marbles. Eur J Mineral 26(2):333–354CrossRefGoogle Scholar
  61. Lapuente P, León P, Nogales T, Royo H, Preite-Martinez M, Blanc Ph (2012) White sculptural materials from Villa Adriana: study of provenance. In: Gutiérrez Garcia A, Lapuente P, Rodà I (Eds.) Interdisciplinary studies on ancient stone. Proceedings of the IX ASMOSIA Conference, Tarragona, pp 364–375Google Scholar
  62. Le Bourdonnec FX, Poupeau G, Lugliè C (2006) SEM-EDS analysis of western Mediterranean obsidians: a new tool for Neolithic provenance studies. Compt Rendus Geosci 338(16):1150–1157CrossRefGoogle Scholar
  63. Le Bourdonnec FX, Bontempi JM, Marini N, Mazet S, Neuville PF, Poupeau G, Sicurani J (2010) SEM-EDS characterization of western Mediterranean obsidians and the Neolithic site of A Fuata (Corsica). J Archaeol Sci 37(1):92–106CrossRefGoogle Scholar
  64. Le Bourdonnec FX, D’Anna A, Poupeau G, Lugliè C, Bellot-Gurlet L, Tramoni P, Marchesi H (2015) Obsidians artefacts from Renaghju (Corsica Island) and the Early Neolithic circulation of obsidian in the Western Mediterranean. Archaeol Anthropol Sci 7(4):441–462CrossRefGoogle Scholar
  65. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms. In: Recommendations of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks. Cambridge University Press, CambridgeGoogle Scholar
  66. Léa V (2012) The diffusion of Obsidian in the Northwestern Mediterranean: toward a new model of the Chassey culture? J Mediterr Archaeol 25(2):147–173CrossRefGoogle Scholar
  67. Lezzerini M, Antonelli F, Columbu S, Gadducci R, Marradi A, Miriello D, Parodi L, Secchiari L, Lazzeri A (2016) The documentation and conservation of the cultural heritage: 3D laser scanning and Gis techniques for thematic mapping of the stonework of the façade of St. Nicholas Church (Pisa, Italy). International Journal of Architectural Heritage: Conservation, Analysis, and Restoration 10(1):9–19CrossRefGoogle Scholar
  68. Lezzerini M, Pagnotta S, Columbu S, Gallello G (2018a) Archaeometric study of mortars from the Pisa's Cathedral Square (Italy). Measurement 126:322-331Google Scholar
  69. Lezzerini M, Pagnotta S, Raneri S, Legnaioli S, Palleschi V, Columbu S, Neri NF, Mazzoleni P (2018b) Examining the reactivity of volcanic ash in ancient mortars by using a micro-chemical approach. Mediterranean Archaeology and Archaeometry, in pressGoogle Scholar
  70. Lilliu G (1988) La civiltà dei sardi: dal paleolitico all’età dei nuraghi. Nuova ERI, TorinoGoogle Scholar
  71. Lofgren G (1971) Experimentally produced devitrification textures in natural rhyolitic glass. Geol Soc Am Bull 82:111–124CrossRefGoogle Scholar
  72. Lugliè C (2003) First report on the study of obsidian prehistoric workshops in the eastern side of Monte Arci (Sardinia). Les Matières Premières Lithique en Préhistoire, Actes de la Tab.-Ronde d’Aurillac (Préhistoire du Sud-ouest, Supplément 5), pp. 207–209Google Scholar
  73. Lugliè C (2009a) L’obsidienne néolithique en Méditerranée occidentale. In: Moncel MH, Frohlich F (eds) L’Homme et le Précieux Matières Minérales Précieuses, BAR International Series 1934. BAR, Oxford, pp 199–211Google Scholar
  74. Lugliè C (2009b) I manufatti litici preistorici. In: Bonetto J, Falezza G, Ghiotoo AR (eds) Nora. Il foro romano. Storia di un'area urbana dall'età fenicia alla tarda antichità 1997–2006. II.1 I materiali preromani. Università di Padova, Padova, pp 1–2Google Scholar
  75. Lugliè C (2010) L'ossidiana del Monte Arci nel Mediterraneo: nuovi apporti sulla diffusione, sui sistemi di produzione e sulla loro cronologia: Proceedings of V° International Congress (Pau, Italia, 27–29 giugno 2008). Nur, AlesGoogle Scholar
  76. Lugliè C (2013) From the perspective of the source. Neolithic production and exchange of Monte Arci obsidians (Central-western Sardinia). In: Networks in the Neolithic. Raw materials, products and ideas circulation in the Western Mediterranean basin (VII-III aC) (Proceedings of the International Conference). Revista Rubricatum, 5: 173–180Google Scholar
  77. Lugliè C, Le Bourdonnec FX, Poupeau G, Bohn M, Meloni S, Oddone M, Tanda G (2006) A map of the Monte Arci (Sardinia Island, Western Mediterranean) obsidian primary to secondary sources. Implications for Neolithic provenance studies. Comptes Rendus Palevol 5(8):995–1003Google Scholar
  78. Luglié C, Le Bourdonnec FX, Poupeau G, Atzeni E, Dubernet S, Moretto P, Serani L (2007) Early neolithic obsidians in Sardinia (western Mediterranean): the Su carroppu case. J Archaeol Sci 34(3):428–439CrossRefGoogle Scholar
  79. Lugliè C, Le Bourdonnec FX, Poupeau G, Congia C, Moretto P, Calligaro T, Sanna I, Dubernet S (2008) Obsidians in the Rio Saboccu (Sardinia, Italy) campsite: provenance, reduction and relations with the wider Early Neolithic Tyrrhenian area. Comptes Rendus Palevol 7(4):249–258Google Scholar
  80. Lugliè C, Le Bourdonnec FX, Poupeau G (2011) Neolithic obsidian economy around the Monte Arci source (Sardinia, Italy): the importance of integrated provenance/technology analyses. In: Turbanti-Memmi, I., (Ed.), Berlin: Springer, Proceedings of the 37th International Symposium on Archaeometry, 12th–16th May 2008, Siena, Italy, pp 255–260Google Scholar
  81. Lustrino M, Morra V, Melluso L, Brotzu P, d'Amelio F, Fedele L, Franciosi L, Lonis R, Petteruti Liebercknecht AM (2004) The Cenozoic igneous activity of Sardinia. Per Min 73:105–134Google Scholar
  82. Lustrino M, Morra V, Fedele L, Franciosi L (2009) Beginning of the Apennine subduction system in central western Mediterranean: constraints from Cenozoic “orogenic”magmatic activity of Sardinia, Italy. Tectonics 28:TC5016CrossRefGoogle Scholar
  83. Lustrino M, Duggen S, Rosenberg CL (2011) The Central-Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci Rev 104:1–40CrossRefGoogle Scholar
  84. Lustrino M, Fedele L, Melluso L, Morra V, Ronga F, Geldmacher J, Duggen S, Agostini S, Cucciniello C, Franciosi L, Meisel T (2013) Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr–Nd–Pb–O–Hf–Os) and petrological view. Lithos 180–181:138–158CrossRefGoogle Scholar
  85. Macciotta G, Columbu S, Garau AM, Marchi M (2004) Obsidian in the geochemical–petrographical evolution of Plio-Quaternary volcanics from Monte Arci. In: Castelli, P. (Ed.), Proceedings of 1st International Conference “L'ossidiana del Monte Arci nel Mediterraneo: recupero dei valori di un territorio”. Oristano-Pau (Italy), 29 November–1 December 2002, pp 35–46Google Scholar
  86. Mackey M, Warren SE (1983) The identification of obsidian sources in the Monte Arci region of Sardinia. In: Aspinall A, Warren SE (eds) Proceedings of the 22nd Symposium on Archaeometry. University of Bradford, Bradford, pp 420–431Google Scholar
  87. Maravelaki-Kalaitzaki P, Bakolas A, Moropoulou A (2003) Physico-chemical study of Cretan ancient mortars. Cem Concr Res 33:65–61CrossRefGoogle Scholar
  88. Marchi M, Garau AM, Columbu S, Macciotta G (2005) Definizione, nel Monte Arci, di possibili siti di provenienza di manufatti ossidianacei, mediterranei, per mezzo della loro caratterizzazione petrografica e geochimica. In: Proceedings of 3rd International Conference “L'ossidiana del Monte Arci nel Mediterraneo: le vie dell’ossidiana nel Mediterraneo ed in Europa”. Oristano-Pau (Italy), 25–26 September 2004, PTM EditorGoogle Scholar
  89. Mastino A (2005) Storia della Sardegna antica. Ed. Il Maestrale, SassariGoogle Scholar
  90. Melis S, Columbu S (2000) Matériaux de construction en époque romaine et aves les anciennes carrières: l’exemple du théâtre de Nora (Sardaigne SO, Ietalie). In: Lorenz, J., Tardy, D., Coulon, G. (Eds.), La pierre dans la ville antique et médiévale. Analyse méthodologie et apports, Argentoun sur Creuse. St.-Marcel: Musée d'Argentomagus (Ed.), pp 103–117Google Scholar
  91. Middlemost EAK (1975) The basalt clan. Earth Sci Rev 11:337–364CrossRefGoogle Scholar
  92. Migaleddu M (1996) Nora IV. Ricognizione. L'insediamento preistorico di S.Abuleu. Quaderni Soprint Arch Prov Ca Or 13:189–209Google Scholar
  93. Miriello D, Barca D, Bloise A, Ciarallo A, Crisci GM, De Rose T, Gattuso C, Gazineo F, La Russa F (2010) Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J Archaeol Sci 37:2207–2223CrossRefGoogle Scholar
  94. Miriello D, Antonelli F, Apollaro C, Bloise A, Bruno N, Catalano E, Columbu S, Crisci GM, De Luca R, Lezzerini M, Mancuso S, La Marca A (2015) New data about the ancient mortars from the archaeological site of Kyme (Turkey): compositional characterization. Per Min 84:497–517Google Scholar
  95. Moropoulou A, Bakolas A, Bisbikou K (2000) Investigation of the technology of historic mortars. J Cult Herit 1:45–58CrossRefGoogle Scholar
  96. Moropoulou A, Bakolas A, Aggelakopoulou E (2004) Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420:135–140CrossRefGoogle Scholar
  97. Morra V, Secchi FA, Assorgia A (1994) Petrogenetic significance of peralkaline rocks from Cenozoic calk-alkaline volcanism from SW Sardinia, Italy. Chem Geol 118:109–142CrossRefGoogle Scholar
  98. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  99. Pollione MV (1521 15 BC) De Architecture. Vol. II. In: Cesariano C, De Architectura Libri Dece, 1521, ComoGoogle Scholar
  100. Previato C (2016) Nora. Le cave di pietra della città antica, Edizioni Quasar, Roma, p 144Google Scholar
  101. Ramacciotti M, Rubio S, Gallello G, Lezzerini M, Columbu S, Hernandez E, Morales-Rubio A, Pastor A, De La Guardia M (2018) Chronological classification of ancient mortars employing spectroscopy and spectrometry techniques: Sagunto (Valencia, Spain) Case. Journal of Spectroscopy 2018:1-10. DOI: 10.1155/2018/9736547Google Scholar
  102. Riccardi MP, Duminuco P, Tomasi C, Ferloni P (1998) Thermal, microscopic and X-ray diffraction studies on some ancient mortars. Thermochim Acta 321:207–214CrossRefGoogle Scholar
  103. Russell A (2010) Foreign materials, islander mobility and elite identity in Late Bronze Age Sardinia. In P. van Dommelen and A.B. Knapp (eds), Material Connections in the Ancient Mediterranean: Mobility, Materiality and Identity: 106–26. London, RoutledgeGoogle Scholar
  104. Shand SJ (1951) Eruptive rocks; their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites, 4th edn. Wiley, New YorkGoogle Scholar
  105. Smith P, Smith RM (2009) Bricks and mortar: a method for identifying construction phases in multistage structures. Hist Archaeol 43:40–60Google Scholar
  106. Stanislao C, Rispoli C, Vola G, Cappelletti P, Morra V, De Gennaro M (2011) Contribution to the knowledge of ancient Roman seawater concretes: Phlegrean pozzolan adopted in the construction of the harbour at Soli-Pompeiopolis (Mersin, Turkey). Per Min 80(3):471–488Google Scholar
  107. Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks, I. Differentiation index. Am J Sci 258:664–684CrossRefGoogle Scholar
  108. Türkmenoglu AG, Tankut A (2002) Use of tuffs from central Turkey as admixture in pozzolanic cements. Assessment of their petrographical properties. Cem Concr Res 32:629–637CrossRefGoogle Scholar
  109. Tykot RH (1996) Obsidian procurement and distribution in the central and western Mediterranean. J Mediterr Archaeol 9(1):39–82CrossRefGoogle Scholar
  110. Tykot RH (1997) Characterization of the Monte Arci (Sardinia) obsidian sources. J Archaeol Sci 24(5):467–479CrossRefGoogle Scholar
  111. Tykot RH (2002) Chemical fingerprinting and source tracing of obsidian: the central Mediterranean trade in black gold. Acc Chem Res 35(8):618–627CrossRefGoogle Scholar
  112. Tykot RH, Glascock MD, Speakman RJ, Atzeni E (2008) Obsidian subsources utilized at sites in Southern Sardinia (Italy). Materials Research Society Symposium Proceedings, Materials Issues in Art and Archaeology VIII, Boston, MA (United States), 1047:175–183Google Scholar
  113. Van Achterbergh E, Ryan CG, Griffin WL (1999) Glitter: on-line interactive data reduction for the laser ablation ICP-MS microbrobe. Proc. 9th V.M. Goldschmidt Conf. (Boston)Google Scholar
  114. Verdiani G, Columbu S (2010) E. Stone, an archive for the Sardinia monumental witnesses. Third International Conference, EuroMed 2010, Lemessos, Cyprus, November 8–13, 2010. Book Chapter. ‘Lecture Notes in Computer Science’ (LNCS), Springer. Berlin-Heidelberg Vol. 6436:356–372Google Scholar
  115. Verdiani G, Columbu S (2012) E. Stone, an archive for the Sardinia monumental witnesses. Int J Heritage Digital Era 1(1):75–102Google Scholar
  116. Vola G, Gotti E, Brandon C, Oleson JP, Hohlfelder RL (2011) Chemical, mineralogical and petrographic characterization of roman ancient hydraulic concretes cores from Santa Liberata, Italy, and Caesarea Palestinae, Israel. Per Min 80(2):317–338Google Scholar
  117. Webster GS (1996) A prehistory of Sardinia 2300-500 BC. Monographs in Mediterranean Archaeology 5. Sheffield Academic PressGoogle Scholar
  118. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar
  119. Wilson RJA (1980) Sardinia and Sicily during the Roman empire: aspect of the archeological evidence. Kokalos 26/27:219–242Google Scholar
  120. Wood DA (1979) A variably veined suboceanic upper mantle—genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology 7:499–503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Columbu
    • 1
  • Anna Maria Garau
    • 1
  • Carlo Lugliè
    • 2
  1. 1.Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCagliariItaly
  2. 2.Dipartimento di Dipartimento di Storia, Beni culturali e Territorio, Cittadella dei MuseiUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations