Skip to main content
Log in

On smelting cassiterite in geological and archaeological samples: preparation and implications for provenance studies on metal artefacts with tin isotopes

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Tin isotope ratios may be a useful tool for tracing back the tin in archaeological metal artefacts (tin metal, bronze) to the geological source and could provide information on ancient smelting processes. This study presents the results of laboratory experiments, which reduced (smelted) synthetic stannic oxide, natural cassiterite and corroded archaeological tin and bronze objects. The overall aim of the study is to find a reliable method for the decomposition of tin ores and corrosion products in order to determine their tin isotopic composition, and to explore possible effects on the tin isotope ratios during pyrometallurgy. We focused on five methods of reduction at high temperatures (900–1100 °C): reduction with CO (plain smelting), reduction with KCN/CO (cyanide reduction), reduction with Na2CO3/CO, reduction with Cu/CO (‘cementation technique’) and reduction with CuO/CO (‘co-smelting’). The smelting products are analysed by means of optical and scanning electron microscopy as well as X-ray diffraction, while their isotope composition is determined with a high-resolution multi-collector mass spectrometer with inductively coupled plasma ionisation. The results show that all five methods decompose synthetic stannic oxide, cassiterite and corrosion products. Ultimately, reduction with KCN is the best solution for analysing tin ores and tin corrosion because the chemical processing is straightforward and it provides the most reproducible results. Reduction with Na2CO3 and copper is an alternative, especially for bronze corrosion, but it requires laborious chemical purification of the sample solutions. In contrast, evaporation of tin and incomplete alloying during plain smelting and co-smelting can cause considerable fractionation among smelting products (Δ124Sn = 0.10 ‰ (0.03 ‰ u−1)). A less precise and even inaccurate determination of the tin isotopic compositions of the tin ores would be the consequence. However, the results of this study help to evaluate the possible influence of the pyrometallurgical processes on the tin isotope composition of tin and bronze artefacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Kuhaili MF (2008) Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82(6):623–629

    Article  Google Scholar 

  • Balliana E, Aramendía M, Resano M, Barbante C, Vanhaecke F (2013) Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Anal Bioanal Chem 405(9):2973–2986

    Article  Google Scholar 

  • Baxter DC, Rodushkin I, Engstrom E, Malinovsky D (2006) Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(4):427–430

    Article  Google Scholar 

  • Begemann F, Kallas K, Schmitt-Strecker S, Pernicka E (1999) Tracing ancient tin via isotope analyses. In: Hauptmann A, Pernicka E, Rehren T, Yalcin Ü (eds) The Beginnings of Metallurgy: Proceedings of the International Conference ‘The Beginnings of Metallurgy’, Bochum 1995, Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum, Bochum, pp 277–284

  • Berger D, Figueiredo E, Brügmann G, Pernicka E (under review) Under review, Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts, J Archaeol Sci

  • Bourgarit D, Thomas N (2011) From laboratory to field experiments: shared experience in brass cementation. Hist Metall 45(1):8–16

    Google Scholar 

  • Brügmann G, Berger D, Pernicka E (2017) Tin stable isotopic composition in tin metals and tin minerals determined by MC-ICP-MS. Geostand Geoanal Res 41(3):437–448

    Article  Google Scholar 

  • Budd P, Haggerty R, Pollard AM, Scaife B, Thomas RG (1995) New heavy isotopes studies in archaeology. Isr J Chem 35(2):125–130

    Article  Google Scholar 

  • Caley ER (1932) The action of hydriodic acid on stannic oxide. J Am Chem Soc 54:3240–3243

    Article  Google Scholar 

  • Clayton R, Andersson P, Gale NH, Gillis C, Whitehouse M (2002) Precise determination of the isotopic composition of Sn using MC-ICP-MS. J Anal At Spectrom 17:1248–1256

    Article  Google Scholar 

  • De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000. Pure Appl Chem 75(6):683–800

    Article  Google Scholar 

  • Debroy T, Patankar A, Simkovich G (1990) Fuming of stannous oxide from silicate melts. Metall Trans B Pyrometall 20(3):449–454

    Article  Google Scholar 

  • Decroly C, Ghodsi M (1966) Étude du comportement de l'oxyde stannique vis-à-vis du fer et de ses oxydes sous pression réduite. Les Mémoires scientifiques de la Revue de métallurgie 63(2):109–125

    Google Scholar 

  • Decroly C, Ghodsi M, Winard R (1967) Recovery of tin by votalization of stannous oxide from slags or iron and calcium stannates. Trans Inst Min Metall Sect C 76:259–267

    Google Scholar 

  • Dunkle SE, Craig JR, Lusardi WR (2004) Romarchite and associated phases as common corrosion products on pewter artifacts from marine archaeological sites. Geoarchaeology 19(6):531–552

    Article  Google Scholar 

  • Earl B (1986) Melting tin in the west of England: part 2. J Hist Metall Soc 20(1):17–32

    Google Scholar 

  • Earl B (1994) Tin from the bronze age smelting viewpoint. J Hist Metall Soc 28(2):117–120

    Google Scholar 

  • El Deeb AB, Morsi IM, Atlam AA, Omar AA, Fathy WM (2015) Pyrometallurgical extraction of tin metal from the Egyptian cassiterite concentrate. Int J Sci Eng Res 6(3):54–64

    Google Scholar 

  • Figueiredo E, Lackinger A, Comendador Rey B, Silva RJC, Veiga JP, Mirão J (2017) An experimental approach for smelting tin ores from Northwestern Iberia. Mater Manuf Process 32(7–8):765–774

    Article  Google Scholar 

  • Gale NH (1997) The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39(1):71–82

    Article  Google Scholar 

  • Gillis C, Clayton R (2008) Tin and the Aegean in the bronze age. In: Tzachili I (ed) Aegean metallurgy in the Bronze Age: Proceedings of an International Symposium held at the University of Crete, Rethymnon, Greece, on November 19–21, 2004. Ta Pragmata Publications, Athens, pp 133–142

    Google Scholar 

  • Gillis C, Clayton RE, Pernicka E, Gale NH (2001) Tin in the Aegean bronze age. In: Polinger Foster K, Laffineur R (eds) Metron: Measuring the Aegean Bronze Age. Proceedings of the 9th international Aegean conference New Haven, Yale University, 18–21 April 2002. Aegaeum 24, Eupen, pp 103–110

  • Grant MR (1999) The sourcing of Southern African tin artefacts. J Archaeol Sci 26(8):1111–1117

    Article  Google Scholar 

  • Griffin J (1827) A practical treatise on the use of the blowpipe in chemical and mineral analysis: Including a systematic arrangement of simple minerals, adapted to aid the student in his progress in mineralogy, by facilitating the discovery of the names of species, R. Griffin & Co., Glasgow

    Google Scholar 

  • Hall A (1980) The determination of total tin content of some geological materials by atomic absorption spectrophotometry. Chem Geol 30(1–2):135–142

    Article  Google Scholar 

  • Haustein M (2014) Isotopengeochemische Untersuchungen zu möglichen Zinnquellen der Bronzezeit Mitteleuropas, Forschungsberichte des Landesmuseums für Vorgeschichte Halle, 3, Landesmuseum für Vorgeschichte Halle (Saale), Halle (Saale)

  • Haustein M, Pernicka E (2011) Die Verfolgung der bronzezeitlichen Zinnquellen Europas durch Zinnisotopie: Eine neue Methode zur Beantwortung einer alten Frage. Jahresschrift für Mitteldeutsche Vorgeschichte 92:387–418

    Google Scholar 

  • Haustein M, Gillis C, Pernicka E (2010) Tin isotopy—a new method for solving old questions. Archaeometry 52(5):816–832

    Article  Google Scholar 

  • Herdits H, Keen J, Steinberger M (1995) Wie kommt das Zinn in die Bronze? Ein Beitrag zur experimentellen Archäologie. Archäologie Österreichs 6(1):78–85

    Google Scholar 

  • Lee D-C, Halliday AN (1995) Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Process 146–147:35–46

    Article  Google Scholar 

  • Li G, You Z, Zhang Y, Rao M, Wen P, Guo Y, Jiang T (2014) Synchronous volatilization of Sn, Zn and As, and preparation of direct reduction iron (DRI) from a complex iron concentrate via CO reduction. J Miner Met Mater Soc 66(9):1701–1710

    Article  Google Scholar 

  • Ling J, Stos-Gale ZA, Grandin L, Billström K, Hjärthner-Holdar E, Persson P-O (2014) Moving metals II: Provenancing Scandinavian bronze age artefacts by lead isotope and elemental analyses. J Archaeol Sci 41:106–132

    Article  Google Scholar 

  • Marahrens J, Berger D, Brügmann G, Pernicka E (2016) Vergleich der stabilen Zinn-Isotopenzusammensetzung von Kassiteriten aus europäischen Zinn-Lagerstätten. In: Greiff S, Kronz A, Schlütter F, Prange M (eds) Archäometrie und Denkmalpflege 2016: Jahrestagung an der Georg-August-Universität Göttingen, 28. September bis 1. Oktober 2016, Metalla, Sonderheft 8. Deutsches Bergbau-Museum, Bochum, pp 190–193

    Google Scholar 

  • Marahrens J, Brügmann G, Berger D, Pernicka E (2017) The tin isotope fingerprint of tin deposits, Goldschmidt Abstracts. https://goldschmidtabstracts.info/abstracts/abstractView?id=2017003027. Accessed 14 September 2017

  • Mason AH, Powell WG, Bankoff HA, Mathur R, Bulatović A, Filipović V, Ruiz J (2016) Tin isotope characterization of bronze artifacts of the central Balkans. J Archaeol Sci 69:110–117

    Article  Google Scholar 

  • Mathur R, Powell W, Mason A, Godfrey L, Yao J, Baker ME (2017) Preparation and measurement of cassiterite for Sn isotope analysis. Geostand Geoanal Res. https://doi.org/10.1111/ggr.12174

  • McNaughton NJ, Rosman KJR (1991) Tin isotope fractionation in terrestrial cassiterites. Geochim Cosmochim Acta 55(2):499–504

    Article  Google Scholar 

  • Meyer RJ, Pietsch EHE (1971) Gmelins Handbuch der anorganischen Chemie. Zinn, Teil A, Weinheim

    Google Scholar 

  • Muhly JD (1985) Sources of tin and the beginnings of bronze metallurgy. Am J Archaeol 89(2):275–291

    Article  Google Scholar 

  • Mulliken RS, Harkins WD (1922) The separation of isotopes: theory of resolution of isotopic mixtures by diffusion and similar processes. Experimental separation of mercury by evaporation in a vacuum. J Am Chem Soc 44(1):37–65

    Article  Google Scholar 

  • Nessel B, Brügmann G, Pernicka E (2015) Tin isotopes and the sources of tin in the early bronze age Únětice culture. In: Hunt Ortiz MA (eds) XV Congreso internacional sobre patrimonio geológico y minero. XIX Sesión científica de la sedpgym. Logrosán (Cáceres, Extremadura), 25–28 de septiembre de 2014, Logrosan, pp 11–28

  • Nowell G, Clayton RE, Gale NH, Stos-Gale ZA (2002) Sources of tin—is isotopic evidence likely to help? In: Pernicka E, Bartelheim M (eds) Die Anfänge der Metallurgie in der alten Welt, Forschungen zur Archäometrie und Altertumswissenschaft 1. Marie Leidorf GmbH, Rahden/Westf, pp 291–302

    Google Scholar 

  • Padilla R, Sohn HY (1979) The reduction of stannic oxide with carbon. Metall Trans B 10(1):109–115

    Article  Google Scholar 

  • Pernicka E (1990) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges, Kiel, pp 135–147

    Google Scholar 

  • Piccardo P, Mille B, Robbiola L (2007) Tin and copper oxides in corroded archaeological bronzes. In: Dillmann P, Piccardo P, Matthiesen H, Beranger G (eds) Corrosion of metallic heritage artefacts: Investigation, conservation and prediction of long term behaviour. Woodhead Publications, Cambridge, pp 239–262

  • Pulak C (1998) The Uluburun shipwreck: an overview. Int J Naut Archaeol 27(3):188–224

    Article  Google Scholar 

  • Rapp G, Rothe R, Jing Z (1999) Using neutron activation analysis to source ancient tin (cassiterite). In: Young SMM, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity. BAR International Series, 792, pp 153–162

  • Robbiola L, Blengino J-M, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros Sci 40(12):2083–2111

    Article  Google Scholar 

  • Rovira S, Montero-Ruiz I, Renzi M (2009) Experimental co-smelting to copper-tin alloys. In: Kienlin TL, Roberts BW (eds) Metals and Societies: Studies in honour of Barbara S. Ottaway, Universitätsforschungen zur Prähistorischen Archäologie, 169. Habelt, Bonn, pp 407–414

    Google Scholar 

  • Schulze M, Ziegerick M, Horn I, Weyer S, Vogt C (2017) Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta B 130:26–34

    Article  Google Scholar 

  • Smith R (1996) An analysis of the processes for tin smelting. Bull Peak District Mines Hist Soc 13(2):91–99

    Google Scholar 

  • Tafel V, Wagenmann K (1953) Lehrbuch der Metallhüttenkunde. Band II. Blei, Zinn, Antimon, Zink, Kadmium, Hirzel, Leipzig

  • Timberlake S (1994) An experimental tin smelt at Flag Fen. J Hist Metall Soc 28(2):121–128

    Google Scholar 

  • Turgoose S (1985) The corrosion of lead and tin: before and after excavation. In: Miles G, Pollard S (eds) Lead and tin: Studies in Conservation and Technology. UKIC occasional papers, 3, London, pp 15–26

  • Wang Q, Strekopytov S, Roberts BW, Wilkin N (2016) Tin ingots from a probable bronze age shipwreck off the coast of Salcombe, Devon: Composition and microstructure. J Archaeol Sci 67:80–92

    Article  Google Scholar 

  • Wright PA (1982) Extractive metallurgy of tin. Elsevier, Amsterdam

    Google Scholar 

  • Yamazaki E, Nakai S, Yokoyama T, Ishihara S, Tang H (2013) Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochem J 47(1):21–35

    Article  Google Scholar 

  • Yamazaki E, Nakai S, Sahoo Y, Yokoyama T, Mifune H, Saito T, Chen J, Takagi N, Hokanishi N, Yasuda A (2014) Feasibility studies of Sn isotope composition for provenancing ancient bronzes. J Archaeol Sci 52:458–467

    Article  Google Scholar 

  • Yi W, Halliday AN, Lee D-C, Christensen JN (1995) Indium and tin in basalts, sulfides, and the mantle. Geochim Cosmochim Acta 59(24):5081–5090

    Article  Google Scholar 

  • Yi W, Budd P, McGill RAR, Young SMM, Halliday AN, Haggerty R, Scaife B, Pollard AM (1999) Tin isotope studies of experimental and prehistoric bronzes. In: Hauptmann A, Pernicka E, Rehren T, Yalcin Ü (eds) The Beginnings of Metallurgy: Proceedings of the International Conference ‘The Beginnings of Metallurgy’, Bochum 1995. Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum, Bochum, pp 285–290

  • Zhang Y, Liu B, Su Z, Chen J, Li G, Jiang T (2015) Volatilization behavior of SnO2 reduced under different CO–CO2 atmospheres at 975 °C–1100 °C. Int J Miner Process 144:33–39

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the research project BRONZEAGETIN—Tin isotopes and the sources of Bronze Age tin in the Old World’ which is financed through an advanced grant (no. 323861) of the European Research Council (ERC) awarded to Ernst Pernicka. We would like to thank the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany, for providing us with the cassiterite concentrate from Rwanda and the chemical data. We further greatly appreciate the permission of using the archaeological samples given by Quanyu Wang, The British Museum, London, Great Britain (Salcombe and Erme Estuary ingots), Harald Meller, State Museum for Prehistory, Halle (Saale), Germany (palstave-hammer) and Michal Ernée, Czech Academy of Sciences, Praha, Czech Republic (tin ring Mikulovice). The analysis of the Mikulovice ring has been made possible with the support of the GAČR project (no. GA16-14855S) ‘Mobility and social status of the Early Bronze Age population on the Amber Road: The testimony of the cemetery in Mikulovice’. Janeta Marahrens supported the laboratory work for TIA and ICP-OES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Berger.

Electronic supplementary material

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, D., Brügmann, G. & Pernicka, E. On smelting cassiterite in geological and archaeological samples: preparation and implications for provenance studies on metal artefacts with tin isotopes. Archaeol Anthropol Sci 11, 293–319 (2019). https://doi.org/10.1007/s12520-017-0544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0544-z

Keywords

Navigation