Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 8, pp 2047–2058 | Cite as

Isotopic evidence for the reconstruction of diet and mobility during village formation in the Early Middle Ages: Las Gobas (Burgos, northern Spain)

  • Iranzu Guede
  • Luis Angel Ortega
  • Maria Cruz Zuluaga
  • Ainhoa Alonso-Olazabal
  • Xabier Murelaga
  • José Luis Solaun
  • Iban Sanchez
  • Agustín Azkarate
Original Paper

Abstract

Strontium, carbon, and nitrogen isotopes of human bone and tooth remains have been used to reconstruct residential mobility and diet of early medieval populations at Las Gobas from the sixth to eleventh centuries. Most non-local individuals correspond to the tenth to eleventh centuries and were mostly women and infants. This residential mobility coincided with the formation of Laño village and the abandonment of artificial cave settlement. Carbon and nitrogen isotope ratios of bone collagen indicate an omnivorous homogenous diet based on terrestrial plant resources, with few animal-derived proteins from livestock. Millet consumption was restricted to an earlier period of time (seventh to ninth centuries); and in later periods (tenth to eleventh centuries), mainly C3 plants such as wheat and barley were consumed. In general, there were no dietary differences between individuals according to sex or age. Sex-related dietary differences have only been observed in the tenth to eleventh centuries, when females consumed a more vegetarian diet and less animal protein. The higher δ 15N values in infants reflect the weaning effect, while the differences in δ 15N values between young adult men and young adult women can be explained as a physiological factor related to pregnancy or different origins. In a comparison with contemporaneous medieval populations in the northern Iberian Peninsula, both δ 13C and δ 15N values suggest similar foodstuff resources and diet among Christian and Muslim populations.

Keywords

Palaeodietary patterns Human migration Rock-hewn dwelling Middle Age Northern Iberian Peninsula 

Notes

Acknowledgments

This work has been supported financially by the Research Project HAR2010-20903 funded by the Ministerio de Economía y Competitividad of the Spanish Government and Research Group GIU15/34 of the University of the Basque Country-UPV/EHU. IG has received a PRE-2013-1-329 PhD research grant of the Basque Country Government. The authors thank the anonymous referees for their comments and suggestions on the manuscript. They also would like to thank Peter Smith for language assistance.

References

  1. Acsádi G, Nemeskéri J (1970) History of human life span and mortality. Akadémiai Kiadó, BudapestGoogle Scholar
  2. Alt KW, Knipper C, Peters D, Müller W, Maurer AF et al (2014) Lombards on the move—an integrative study of the migration period cemetery at Szólád, Hungary. PLoS One. doi: 10.1371/journal.pone.0110793 CrossRefGoogle Scholar
  3. Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451CrossRefGoogle Scholar
  4. Ambrose SH, Katzenberg MA (eds) (2000) Biogeochemical approaches to paleodietary analysis. Kluwer Academic/Plenum Publisher, New YorkGoogle Scholar
  5. Ambrose S, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G (eds) Prehistoric human bone archaeology at the molecular level. Springer-Verlag, Berlin, pp 1–37Google Scholar
  6. Azkarate A (1988) Arqueología cristiana de la Antigüedad Tardía en Álava, Guipúzcoa y Vizcaya. Diputación Foral de Álava, Vitoria-GasteizGoogle Scholar
  7. Azkarate A, Solaun JL (2008) Excavaciones arqueológicas en el exterior de los conjuntos rupestres de Las Gobas (Laño, Burgos). Arch Esp Arqueol 81:133–149CrossRefGoogle Scholar
  8. Azkarate A, Solaun JL (2015) Espacios domésticos, urbanos y rurales, de época medieval en el País Vasco. In: Díez ME, Navarro J (eds) La casa medieval en la Península Ibérica. Sílex Ediciones, Madrid, pp 541–576Google Scholar
  9. Baceta JI, Berreteaga A, Ortega L, Murelaga X (2013) Anatomy of a Danian (lower Palaeocene) reef-rimmed carbonate shelf: interrelationships between high-resolution stratigraphy and large-scale secondary diagenetic modifications. Internal Research Report, BG International LTDGoogle Scholar
  10. Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method and Theory 13(3):135–187CrossRefGoogle Scholar
  11. Bentley RA, Price TD, Stephan E (2004) Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: a case study from Neolithic Europe. J Archaeol Sci 31(4):365–375CrossRefGoogle Scholar
  12. Bianchi G (2012) Building, inhabiting and “perceiving” private houses in early medieval Italy. Arqueología de la Arquitectura 9:195–212Google Scholar
  13. Birck JL (1986) Precision K-Rb-Sr isotopic analysis: application to Rb-Sr chronology. Chem Geol 56(1–2):73–83CrossRefGoogle Scholar
  14. Bittel LM (2002) Women in early medieval Europe, 400–1100. Cambridge University Press, CambridgeGoogle Scholar
  15. Bocherens H, Drucker D (2003) Trophic level enrichment of carbon and nitrogen in bone collagen: case studies from recent and terrestrial ecosystems. Int J Ostearchaeol 13:46–53CrossRefGoogle Scholar
  16. Bocherens H, Fizet M, Mariotti A, Lange-Badre B, Vandermeersch B, Borel JP, Bellon G (1991) Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. J Hum Evol 20:481–492CrossRefGoogle Scholar
  17. Castaños Ugarte P, Castaños de la Fuente J (2014) Estudio arqueozoológico de la fauna de “Las Gobas” (Laño, Burgos). Unpublished reportGoogle Scholar
  18. Castellanos S (1998) Poder social, aristocracias y hombre santo en la Hispania Visigoda. La Vita Aemiliani de Braulio de Zaragoza. Universidad de La Rioja, LogroñoGoogle Scholar
  19. Chisholm BS, Nelson DE, Schwarcz HP (1982) Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–1132CrossRefGoogle Scholar
  20. De Luca A, Boisseau N, Tea I, Louvet I, Robins RJ, Forhan A, Charles MA, Hankard R (2012) δ(15)N and δ(13)C in hair from newborn infants and their mothers: a cohort study. Pediatr Res 71:598–604CrossRefGoogle Scholar
  21. DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  22. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  23. Ericson JE (1989) Some problems and of strontium isotope analysis for human and animal ecology. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, pp 254–269Google Scholar
  24. Espinosa U (2006) «Civitates y territoria en el Ebro Medio: continuidad y cambio durante la Antigüedad Tardía», en U. Espinosa y S. Castellanos (eds.), Comunidades locales y dinámicas de poder en el norte de la Península Ibérica durante la Antigüedad Tardía, Logroño, pp 41–100Google Scholar
  25. Ferembach D, Schwidetzky I, Stloukal M (1980) Recommendations for age and sex diagnoses of skeletons. J Hum Evol 9:517–549CrossRefGoogle Scholar
  26. Frei K, Price TD (2012) Strontium isotopes and human mobility in prehistoric Denmark. Archaeol Anthropol Sci 4(2):103–114CrossRefGoogle Scholar
  27. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, REM H (2004) Nitrogen balance and 15N: why you’re not what you eat during pregnancy. Rapid Commun Mass Spectrom 18:2889–2896CrossRefGoogle Scholar
  28. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, REM H (2005) Nitrogen balance and 15N: why you’re not what you eat during nutritional stress. Rapid Commun Mass spectrum 19:2497–2506CrossRefGoogle Scholar
  29. González Blanco A (1993) La investigación sobre las cuevas. Antigüedad y cristianismo 10:15–40Google Scholar
  30. Grumett D, Muers R (2010) Theology on the menu: asceticism, meat and Christian diet. RoutledgeGoogle Scholar
  31. Guede I, Ortega LA, Zuluaga MC, Alonso-Olazabal A, Murelaga X, Pina M, Gutierrez FJ, Iacumin P (2017) Isotope analyses to explore diet and mobility in a medieval Muslim population at Tauste (NE Spain). PlosOne. doi: 10.1371/journal.pone.0176572 CrossRefGoogle Scholar
  32. Hedges REM, Reynard L (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34(8):1240–1251CrossRefGoogle Scholar
  33. Hemer KA, Lamb AL, Chenery CA, Evans JA (2017) A multi-isotope investigation of diet and subsistence amongst island and mainland populations from early medieval western Britain. Am J Phys Antrhopol 162:423–440CrossRefGoogle Scholar
  34. Herrasti L, Etxeberria F (2014) Estudio de los restos óseos humanos procedentes de la necrópolis de Las Gobas (Laño, Treviño). Unpublished reportGoogle Scholar
  35. Högberg U, Iregren E, Siven CH, Diener L (1987) Maternal deaths in medieval Sweden: an osteological and life table analysis. J Biosoc Sci 19(04):495–503CrossRefGoogle Scholar
  36. Insoll T (1999) The archaeology of Islam. Blackwell, OxfordGoogle Scholar
  37. Joyce RA (2001) Burying the dead at Tlatilco: social memory and social identities. Archaeological Papers of the American Anthropological Association 10(1):12–26CrossRefGoogle Scholar
  38. Katzenberg MA (2000) Stable isotope analysis: a tool for studying past diet, demography and life history. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, New York, pp 305–328Google Scholar
  39. López-Costas O, Müldner G (2016) Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia Am J Physic Anthropol 161:141-154CrossRefGoogle Scholar
  40. Monreal LA (1997) Arquitectura religiosa de oquedades en los siglos anteriores al románico. VII Semana de Estudios Medievales 235–264Google Scholar
  41. Montgomery J, Evans JA, Wildman G (2006) Sr-87/Sr-86 isotope composition of bottled British mineral waters for environmental and forensic purposes. Appl Geochem 21:1626–1634CrossRefGoogle Scholar
  42. Mundee M (2010) Exploring diet and society in medieval Spain: new approaches using stable isotope analysis. Dissertation, Durham UniversityGoogle Scholar
  43. O’Connell TC, Kneale CJ, Tasevska N, GGC K (2012) The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149:426–434CrossRefGoogle Scholar
  44. Oelze VM, Fuller BT, Richards MP, Fruth B, Surbeck M, Hublin JJ, Hohmann G (2011) Exploring the contribution and significance of animal protein in the diet of bonobos by stable isotope ratio analysis of hair. PNAS 108(24):9792–9797CrossRefGoogle Scholar
  45. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koeppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  46. Price TD, Burton JH, Bentley RA (2002) The characterization of biological available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–136CrossRefGoogle Scholar
  47. Quirós Castillo JA (2006) La génesis del paisaje medieval en Álava: la formación de la red aldeana. Arqueología y Territorio Medieval 13(1):49–83Google Scholar
  48. Quirós Castillo JA (2009) Early medieval villages in Spain in the light of European experience. New approaches in peasant archaeology. In: Quirós Castillo JA (ed) The archaeology of early medieval villages in Europe. Universidad del País Vasco, Bilbao, pp 13–28Google Scholar
  49. Quirós Castillo JA (2011) Early medieval landscape in north-west Spain: local powers and communities, fifth-tenth centuries. Early medieval Europe 19(3):285–311CrossRefGoogle Scholar
  50. Quirós Castillo JA (2013a) Los comportamientos alimentarios del campesinado medieval en el País Vasco y su entorno (siglos VIII-XIV). Historia Agraria 59:13–41Google Scholar
  51. Quirós Castillo JA (2013b) Identidades y ajuares en las necrópolis Alto Medievales. Estudios isotópicos del cementerio de San Matín de Dulantzi, Alava (siglos VI-X). Arch Esp Arqueol 86:215–232CrossRefGoogle Scholar
  52. Quirós Castillo JA (2016) Inequality and social complexity in peasant societies. Some approaches to early medieval north-western Iberia. In: Quirós Castillo JA (ed) Social complexity in early medieval rural communities. The north-western Iberia archaeological record. Archaeopress Archaeology, Oxford, pp 1–16Google Scholar
  53. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Groote PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  54. Richards MP (2000) Human consumption of plant foods in the British Neolithic: direct evidence from bone stable isotopes. In: Fairbairn AS (ed) Plants in Neolithic Britain and beyond. Oxbow Books, Oxford, pp 123–135Google Scholar
  55. Richards MP, Mays S, Fuller BT (2002) Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, UK. Am J Phys Anthropol 119:205–210CrossRefGoogle Scholar
  56. Salazar-García DC, Romero A, García-Borja P, Subirá ME, Richards MP (2016) A combined dietary approach using isotope and dental buccal-microwear analysis of human remains from the Neolithic, Roman and Medieval periods from the archaeological site of Tossal de les Basses (Alicante, Spain). J Archaeol Sci: Reports 6:610–619Google Scholar
  57. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  58. Schoeninger MJ, DeNiro MJ, Tauber H (1983) Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220:1381–1383CrossRefGoogle Scholar
  59. Schurr MR, Powell ML (2005) The role of changing childhood diets in the prehistoric evolution of food production: an isotopic assessment. Am J Phys Anthropol 126:278–294CrossRefGoogle Scholar
  60. Schwarcz HP, Schoeninger MJ (1991) Stable isotope analyses in human nutritional ecology. Yearb Phys Anthropol 34:283–321CrossRefGoogle Scholar
  61. Schwarcz HP, Schoeninger MJ (2011) Stable isotopes of carbon and nitrogen as tracers for paleodiet reconstruction. In: Baskaran M (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer-Verlag, Berlin, pp 725–742Google Scholar
  62. Sesma A (1977) Aproximación al estudio del régimen alimentario del reino de Aragón en los siglos XI y XII. In: Ubieto A (ed) Homenaje a Miguel Lacarra en su jubilación del profesorado II. Anubar, Zaragoza, pp 55–78Google Scholar
  63. Sirignano C, Sologestoa IG, Ricci P, García-Collado MI, Altieri S, Castillo JAQ, Lubritto C (2014) Animal husbandry during Early and High Middle Ages in the Basque Country (Spain). Quat Int 346:138–148CrossRefGoogle Scholar
  64. Šlaus M (2000) Biocultural analysis of sex differences in mortality profiles and stress levels in the late medieval population from Nova Raca, Croatia. Am J Phys Anthropol 111(2):193–209CrossRefGoogle Scholar
  65. Šlaus M, Kollmann D, Novak SA, Novak M (2002) Temporal trends in demographic profiles and stress levels in medieval (6th–13th century) population samples from continental Croatia. Croatian Medical Journal 43(5):598–605Google Scholar
  66. Stuiver M, Reimer PJ, Reimer RW (2017) CALIB 7.1 [WWW program] at http://calib.org, accessed 2017–4-10
  67. Tocheri MW, Dupras TL, Sheldrick P, Molto JE (2005) Roman period fetal skeletons from the east cemetery (Kellis 2) of Kellis, Egypt. Int J Osteoarchaeol 15(5):326–341CrossRefGoogle Scholar
  68. Tomás MS (2009) El uso terapéutico de la alimentación en la Baja Edad Media. In: Arízaga B, Solórzano JA (eds) Alimentar la ciudad en la Edad Media. Instituto de Estudios Riojanos, Logroño, pp 459–490Google Scholar
  69. Tütken T, Vennemann TW, Pfretzschner H-U (2011) Nd and Sr isotope compositions in modern and fossil bones—proxies for vertebrate provenance and taphonomy. Geochim Cosmochim Acta 75:5951–5970CrossRefGoogle Scholar
  70. Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118(4):933–940CrossRefGoogle Scholar
  71. White T, Black M, Folkens P (1991) Human osteology. Academic Press, San DiegoGoogle Scholar
  72. Wickham C (2008) Una historia nueva de la Alta Edad Media. Crítica, BarcelonaGoogle Scholar
  73. Woolgar CM, Serjeantson DY, Waldron T (2006) Food in medieval England. Diet and nutrition, Oxford University Press, OxfordGoogle Scholar
  74. Zaouali L (2007) Medieval cuisine of the Islamic world. University of California Press, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Iranzu Guede
    • 1
  • Luis Angel Ortega
    • 1
  • Maria Cruz Zuluaga
    • 1
  • Ainhoa Alonso-Olazabal
    • 1
  • Xabier Murelaga
    • 2
  • José Luis Solaun
    • 3
  • Iban Sanchez
    • 3
  • Agustín Azkarate
    • 3
  1. 1.Deparment of Mineralogy and Petrology, Faculty of Science and TechnologyUPV/EHULeioaSpain
  2. 2.Department of Stratigraphy and Palaeontology, Faculty of Science and TechnologyUPV/EHULeioaSpain
  3. 3.Department of Geography, Prehistory and Archaeology, Faculty of ArtsUPV/EHUVitoria-GasteizSpain

Personalised recommendations