Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 8, pp 1841–1849 | Cite as

Non-destructive spectroscopic investigation of artefacts from middle Hallstatt period—case study of a stone bead from Tărtăria I hoard, Romania

  • Luminița Ghervase
  • Ioana Maria Cortea
  • Roxana Rădvan
  • Corina Borș
Original Paper
  • 151 Downloads

Abstract

A stone bead, part of a necklace found in a middle Hallstatt period—type of settlement—the Tărtăria site in Alba County, Romania, was investigated following a non-destructive approach, by means of energy-dispersive X-ray fluorescence spectrometry and Fourier transform infrared spectroscopy. The highly heterogenous object, found together with numerous bronze and iron objects, appeared to be a variety of chalcedony rich in iron and copper impurities, still preserving clay minerals from the sedimentary matrix in some of the areas. Organic molecules found at the surface of the stone artefact may indicate the presence of a wax or resin residue, possible evidence of early craft specialization. The non-destructive protocol applied allowed an in-depth characterization of the artefact, providing important information not only on the crystal structure but also on the diagnostic impurities present within this peculiar stone bead.

Keywords

Archaeological stone bead X-ray fluorescence spectroscopy Fourier transform infrared spectroscopy Tărtăria hoards Chalcedony Organic residues 

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, PN II-PT-PCCA-2013-4-1022.

References

  1. Bagdzevičienė J, Niaura C, Garškaitė E, Senvaitienė J, Lukšėnienė J, Tautkus S (2011) Spectroscopic analysis of lead tin yellow pigment in medieval necklace beads from Kernavė-Kriveikiškės cemetery in Lithuania. CHEMIJA 22:2016–2222Google Scholar
  2. Bar-Yosef Mayer DE (2016) Stone beads. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer, Netherlands, pp 4023–4026Google Scholar
  3. Bar-Yosef Mayer DE, Porat N (2008) Green stone beads at the dawn of agriculture. Proc Natl Acad Sci (PNAS) 105:8548–8551CrossRefGoogle Scholar
  4. Baron J, Miazga B, Ntfalos T, Puziewicz J, Szumny A (2016) Beeswax remnants, phase and major element chemical composition of the bronze age mould from Gaj Oławski (SW Poland). Archaeol Anthropol Sci 8:187–196CrossRefGoogle Scholar
  5. Borș C, Irimuș L, Rumega V, Dobrotă S, Rișcuța C (2014) Un nou sit de tip Basarabi. Raport arheologic preliminar asupra cercetărilor arheologice preventive de la Tărtăria – Podu Tărtăriei vest (campania 2012). Cercetări Arheologice 20:9–102 (in Romanian)Google Scholar
  6. Cantisani E, Cavalieri M, Lofrumento C, Pecchioni E, Ricci M (2012) Ceramic findings from the archaeological site at Aiano-Torraccia di Chiusi (Siena, Italy): a multi-analytical approach. Archaeol Anthropol Sci 4:29–46CrossRefGoogle Scholar
  7. Cârciumaru M, Ion RM, Niţu EC, Ştefănescu R (2012) New evidence of adhesive as hafting material on Middle and Upper Palaeolithic artefacts from Gura Cheii-Râşnov Cave (Romania). J Archaeol Sci 39:1942–1950CrossRefGoogle Scholar
  8. Centeno SA, Williams VI, Little NC, Speakman RJ (2012) Characterization of surface decorations in Prehispanic archaeological ceramics by Raman spectroscopy, FTIR, XED and XRF. Vib Spectrosc 58:119–124CrossRefGoogle Scholar
  9. Craig N, Speakman RJ, Popelka-Filcoff RS, Glascock MD, Robertson JD, Shackley MS, Aldenderfer MS (2007) Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú. J Archaeol Sci 34:2012–2014CrossRefGoogle Scholar
  10. Delgado Robles AA, Ruvalcaba Sil JL, Claes P, Manrique Ortega MD, González EC, Maynez Rojas MA, Cuevas García M, García Castillo S (2015) Non-destructive in situ spectroscopic analysis of greenstone objects from royal burial offerings of the Mayan site of Palenque, Mexico. Herit Sci 3. doi:  10.1186/s40494-015-0048-z
  11. Ekgasit S, Padermshoke A (2001) Optical contact in ATR/FTIR spectroscopy. Appl Spectrosc 55:1352–1359CrossRefGoogle Scholar
  12. Fernandes R, van Os BJH, Huisman HDJ (2013) The use of hand-held XRF for investigating the composition and corrosion of Roman copper-alloyed artefacts. Herit Sci 1:30. doi: 10.1186/2050-7445-1-30 CrossRefGoogle Scholar
  13. Forouzan F, Glover JB, Williams F, Deocampo D (2012) Portable XRF analysis of zoomorphic figurines, “tokens”, and sling bullets from Chogha Gavaneh, Iran. J Archaeol Sci 39:3534–3541CrossRefGoogle Scholar
  14. Galli A, Bonizzoni L, Sibilia E, Martini M (2011) EDXRF analysis of metal artefacts from the grave goods of the Royal Tomb 14 of Sipán, Peru. X-Ray Spectrom 40:74–78CrossRefGoogle Scholar
  15. Gasanova S, Pagès-Camagna S, Andrioti M, Hermon S (2016) Non-destructive in situ analysis of polychromy on ancient Cypriot sculptures. Archaeol Anthropol Sci. doi: 10.1007/s12520-016-0340-1 CrossRefGoogle Scholar
  16. Gauss RK, Bátora J, Nowaczinski E, Rassman K, Schukraft G (2013) The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): reconstructing prehistoric settlement patterns using portable XRF. J Archaeol Sci 40:2942–2960CrossRefGoogle Scholar
  17. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526CrossRefGoogle Scholar
  18. Helwig K (1998) The characterization of iron earth pigments using infrared spectroscopy. IRUG2 at V&A Postprints. 83–92Google Scholar
  19. Homsher RS, Tepper Y, Drake BL, Adams MJ, David J (2016) From the Bronze Age to the “Lead Age”: observations on sediment analyses at two archaeological sites in the Jezreel Valley, Israel. Mediterr Archaeol Ar 16:203–220Google Scholar
  20. Levent P, Īsrafil Ş, Jiri T, Jiri P, Petr N, Jakub N (2015) Dielectric behaviors at microwave frequencies and Mössbauer effects of chalcedony, agate, and zultanite. Chinese Phys B 24:059101CrossRefGoogle Scholar
  21. Liu S, Li QH, Gan F, Zhang P, Lankton JW (2012) Silk Road glass in Xianjiang, China: chemical compositional analysis and interpretation using a high-resolution portable XRF spectrometer. J Archaeol Sci 39:2128–2142CrossRefGoogle Scholar
  22. Metzner-Nebelsick C (2005) Despre importanța cronologică și cultural-istorică a depozitelor din România în epoca târzie a bronzului și în epoca timpurie a fierului. In: Soroceanu T (ed.), Bronzefunde aus Rumänien II. / Descoperiri de bronzuri din România II, Bistrița/Cluj-Napoca, 317–342. (in Romanian).Google Scholar
  23. Mezzi A, Angelini E, Riccucci C, Grassini S, De Caro T, Faraldi F, Bernardini P (2012) Micro-structural and micro-chemical composition of bronze artefacts from Tharros (Western Sardinia, Italy). Surf Interface Anal 44:958–962CrossRefGoogle Scholar
  24. Middleton A, la Niece S, Ambers J, Hook D, Hoobs R, Seddon G (2007) An elusive stone: the use of variscite as a semi-precious stone. Br Mus Tech Res Bull 1:29–34Google Scholar
  25. Müskens S, Braekmans D, Versluys MJ, Degryse P (2017) Egyptian sculptures from Imperial Rome. Non-destructive characterization of granitoid statues through macroscopic methodologies and in situ XRF analysis. Archaeol Anthropol Sci doi: 10.1007/s12520-016-0456-3 CrossRefGoogle Scholar
  26. Papachristodoulou C, Oikonomou A, Ioannides K, Gravani K (2006) A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis. Anal Chim Acta 573-574:347–353CrossRefGoogle Scholar
  27. Paterakis AB (2003) The influence of conservation treatments and environmental storage factors on corrosion of copper alloys in the ancient Athenian Agora. J Am Inst Conserv 42:313–339CrossRefGoogle Scholar
  28. Petrescu-Dîmbovița M (1977) Depozitele de bronzuri din România. București (in Romanian) Google Scholar
  29. Phillips SC, Speakman RJ (2009) Initial source evaluation of archaeological obsidian from the Kuril Islands of the Russian Far East using portable XRF. J Archaeol Sci 36:1256–1263CrossRefGoogle Scholar
  30. Pillay AE, Punyadeera C, Jacobson L, Eriksen J (2000) Analysis of ancient pottery and ceramic objects using X-ray fluorescence spectrometry. X-Ray Spectrom 29:53–62CrossRefGoogle Scholar
  31. Rădvan R, Borş C, Ghervase L (2016) Portable X-ray fluorescence investigation of certain bronze beads of Hoard Tărtăria I and their specific corrosion. Rom J Phys 61:1530–1538Google Scholar
  32. Regert M, Colinart S, Degrand L, Decavallas O (2001) Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 43:549–569CrossRefGoogle Scholar
  33. Robertshaw P (2014) Chemical analysis, chronology, and context of a European glass bead assemblage from Garumele, Niger. J Archaeol Sci 41:591–604CrossRefGoogle Scholar
  34. Schmidt P, Frohlich F (2011) Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy. Spectrochim Acta A 78:1476–1481CrossRefGoogle Scholar
  35. Simileanu M, Rădvan R (2011) Remote method and set-up for the characterization of the submerged archaeological remmants. J Optoelectron Adv M 13:528–531Google Scholar
  36. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC PressGoogle Scholar
  37. Sokaras D, Karydas AG, Oikonomou A, Zacharias N, Beltsios K, Kantarelou V (2009) Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques. Anal Bioanal Chem 395:2199–2209CrossRefGoogle Scholar
  38. Soroceanu T (1995) Die Fundumstände bronzezeitlicher Deponierung – Ein Beitrag zur Hortdeutung beiderseits der Karpaten. In: Soroceanu T (ed) Bronzefunde aus Rumänien, Prähistorische Archäologie in Südosteuropa, vol 10, pp 15–80Google Scholar
  39. Speakman RJ, Little NC, Creel D, Miller MR, Iñañez JG (2011) Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. J Archaeol Sci 38:3483–3496CrossRefGoogle Scholar
  40. Tripati S, Mudholkar A, Vora KH, Ramalingeswara Rao B, Sundaresh ASG (2010) Geochemical and mineralogical analysis of stone anchors from west coast on India: provenance study using thin sections, XRF and SEM-EDS. J Archaeol Sci 37:1999–2009CrossRefGoogle Scholar
  41. Vasilache V, Aparaschivei D, Sandu I (2011) A scientific investigation of the ancient jewels found in the Ibida site, Romania. Int J Conserv Sci 2:117–126Google Scholar
  42. Vahur S, Kriiska A, Leito I (2011) Investigation of the adhesive residue on the flint insert and the adhesive lump found from the Pulli Early Mesolithic settlement site (Estonia) by micro-ATR-FT-IR spectroscopy. Est J Archaeol 15:3–17CrossRefGoogle Scholar
  43. Wright KI, Critchley P, Garrard A, Baird D, Bains R, Groom S (2008) Stone bead technologies and early craft specialization: insights from two Neolithic sites in eastern Jordan. Levant 40:131–165CrossRefGoogle Scholar
  44. Zhu J, Yang Y, Xu W, Chen D, Dong J, Wang L, Glascock MD (2012) Study of an archaeological opaque red glass bead from China by XRD, XRF, and XANES. X-Ray Spectrom 41:363–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Luminița Ghervase
    • 1
  • Ioana Maria Cortea
    • 1
  • Roxana Rădvan
    • 1
  • Corina Borș
    • 2
  1. 1.National Institute of Research and Development for Optoelectronics INOE 2000MăgureleRomania
  2. 2.National Museum of Romanian HistoryBucharestRomania

Personalised recommendations