Archaeological and Anthropological Sciences

, Volume 10, Issue 6, pp 1459–1476 | Cite as

A rallying point for different predators: the avian record from a Late Pleistocene sequence of Grotte des Barasses II (Balazuc, Ardèche, France)

  • Anna RufàEmail author
  • Ruth Blasco
  • Thierry Roger
  • Mathieu Rué
  • Camille Daujeard
Original Paper


The presence of processed birds in the archeological faunal record is considered key to assessing human dietary evolution. Taphonomic studies on birds from sites older than Marine Isotope Stage (MIS) 2 have become relevant in the last few years, leading to the proposal of more complex scenarios of human subsistence. Several works have demonstrated direct evidence of bird consumption by Homo prior to anatomically modern humans in Europe; however, others support the hypothesis of non-anthropogenic bird accumulations. This has led to the necessity of determining what elements or factors cause the human exploitation of birds in some archeological sites before the end of the Pleistocene. The Grotte des Barasses II site is located within this framework. Short-term human occupations have been attested by the presence of lithic tools and processed macrofaunal remains. Additionally, a small assemblage of bird bones has also been recovered. Here, we present a detailed taphonomic study with the aim of exploring possible relationships between these avian taxa and human occupations. Despite the fact that Neanderthals inhabited the cave, avian specimens show damage pointing to different causative agents. Direct evidence (digestion, gnawing) indicates that mammalian carnivores and nocturnal raptors were mainly involved in the accumulation of bird bones. We propose some factors that might determine whether or not small game was exploited in this specific locality and emphasize the importance of such analytical approaches in the general interpretations of the Pleistocene sites.


Avian specimens Grotte des Barasses II Taphonomy Mammalian carnivores Birds of prey 



The fieldworks were supported by the French Ministry of Culture and Communication (Regional Office of Archeology Rhône-Alpes) and the Ardèche Department. This research is part of the collective research program (PCR) “Espaces et subsistance au Paléolithique Moyen dans le Massif central” funded by the Ministry of Culture and Communication, the Région Aquitaine, and local authorities of Haute-Loire and Ardèche. We would like to express our gratitude to Marie-Hélène Moncel and Jean-Paul Raynal for allowing us to collaborate in their collective research project. Anna Rufà is a beneficiary of a pre-doctoral grant FPU (FPU12/00238), financially supported by the Spanish Ministry of Culture, Science, and Sports. This work has also been developed within the framework of the Spanish MICINN projects CGL2015-68604-P and HAR2016-76760-C3-1-P, the Generalitat de Catalunya-AGAUR projects 2014 SGR 900 and 2014/100573, and the SéNeCa Foundation project 19434/PI/14. Also, we want to acknowledge Núria Ibáñez and Lluís García for their help with the identification of some of the avian specimens.


  1. Andrews P (1990) Owls, caves and fossils. University of Chicago Press, LondonGoogle Scholar
  2. Baales M (1992) Accumulations of bones of lagopus in Late Pleistocene sediments. Are they caused by man or animals? Cranium 9:17–22Google Scholar
  3. Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4:150–162Google Scholar
  4. Behrensmeyer AK, Stayton CT, Chapman RE (2003) Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29:52–70Google Scholar
  5. Blasco R, Fernández Peris J (2009) Middle Pleistocene bird consumption at level XI of Bolomor Cave (Valencia, Spain). J Archaeol Sci 36:2213–2223Google Scholar
  6. Blasco R, Fernández Peris J (2012) Small and large game: human use of diverse faunal resources at level IV of Bolomor Cave (Valencia, Spain). CR Palevol 11:265–282Google Scholar
  7. Blasco R, Blain H-A, Rosell J, Díez JC, Huguet R, Rodríguez J, Arsuaga JL, Bermúdez de Castro JM, Carbonell E (2011) Earliest evidence for human consumption of tortoises in the European Early Pleistocene from Sima del Elefante, Sierra de Atapuerca, Spain. J Hum Evol 61:503–509Google Scholar
  8. Blasco R, Rosell J, Fernández Peris J, Arsuaga JL, Bermúdez de Castro JM, Carbonell E (2013) Environmental availability, behavioural diversity and diet: a zooarchaeological approach from the TD10-1 sublevel of Gran Dolina (Sierra de Atapuerca, Burgos, Spain) and Bolomor Cave (Valencia, Spain). Quat Sci Rev 70:124–144Google Scholar
  9. Blasco R, Finlayson C, Rosell J, Marco AS, Finlayson S, Finlayson G, Negro JJ, Pacheco FG, Vidal JR (2014) The earliest pigeon fanciers. Sci Rep 4:5971Google Scholar
  10. Blasco R, Rosell J, Rufà A, Sánchez Marco A, Finlayson C (2016) Pigeons and choughs, a usual resource for the Neanderthals in Gibraltar. Quat Int 421:62–77Google Scholar
  11. Bochenski ZM (1997) Preliminary taphonomic studies on damage to bird bones by snowy owls Nyctea scandiaca, with comments on the survival of bones in palaeontological sites. Acta Zool Cracoviensia 40:279–292Google Scholar
  12. Bochenski ZM (2005) Owls, diurnal raptors and humans: signatures on avian bones. In: O’Connor T (ed) Biosphere to lithosphere. New Studies in Vertebrate Taphonomy. Oxbow Books, Oxford, pp 31–45Google Scholar
  13. Bochenski ZM, Nekrasov AE (2001) The taphonomy of sub-Atlantic bird remains from Bazhukovo III, Ural Mountains, Russia. Acta Zool Cracoviensia 44:279–292Google Scholar
  14. Bochenski ZM, Tomek T (1994) Patterns of bird bone fragmentation in pellets of the long-eared owl Asio otus and its taphonomic implications. Acta Zool Cracoviensia 37:177–190Google Scholar
  15. Bochenski ZM, Tomek T (1997) Preservation of bird bones: erosion versus digestion by owls. Int J Osteoarchaeol 7:372–387Google Scholar
  16. Bochenski ZM, Tomek T (2009) A key for the identification of domestic bird bones in Europe: preliminary determination. Institute of Systematics and Evolution of Animals. Polish Academy of Sciences, KrákowGoogle Scholar
  17. Bochenski ZM, Tornberg R (2003) Fragmentation and preservation of bird bones in uneaten food remains of the gyrfalcon Falco rusticolus. J Archaeol Sci 30:1665–1671Google Scholar
  18. Bochenski ZM, Boev Z, Mitev I, Tomek T (1993) Patterns of bird bone fragmentation in pellets of the tawny owl (Strix aluco) and the eagle owl (Bubo bubo) and their taphonomic implications. Acta Zool Cracoviensia 3:313–328Google Scholar
  19. Bochenski ZM, Korovin V, Nekrasov AE, Tomek T (1997) Fragmentation of bird bones in food remains of imperial eagles (Aquila heliaca). Int J Osteoarchaeol 7:165–171Google Scholar
  20. Bochenski ZM, Huhtala K, Jussila P, Pulliainen E, Tornberg R, Tunkkari PS (1998) Damage to bird bones in pellets of gyrfalcon Falco rusticolus. J Archaeol Sci 25:425–433Google Scholar
  21. Bochenski ZM, Huhtala K, Sulkava S, Tornberg R (1999) Fragmentation and preservation of bird bones in food remains of the golden eagle Aquila chrysaetos. Archaeofauna 8:31–39Google Scholar
  22. Bochenski ZM, Tomek T, Tornberg R, Wertz K (2009) Distinguishing nonhuman predation on birds: pattern of damage done by the white-tailed eagle Haliaetus albicilla, with comments on the punctures made by the golden eagle Aquila chrysaetos. J Archaeol Sci 36:122–129Google Scholar
  23. Bovy KM (2002) Differential avian skeletal part distribution: explaining the abundance of wings. J Archaeol Sci 29:965–978Google Scholar
  24. Bovy KM (2012) Why so many wings? A re-examination of avian skeletal part representation in the south-central Northwest Coast. USA J Archaeol Sci 39:2049–2059Google Scholar
  25. Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. The University of Chicago Press, Chicago/LondonGoogle Scholar
  26. Bramwell D, Yalden DW, Yalden PE (1987) Black grouse as the prey of the golden eagle at an archaeological site. J Archaeol Sci 14:195–200Google Scholar
  27. Broughton JM, Mullins D, Ekker T (2007) Avian resource depression or intertaxonomic variation in bone density? A test with San Francisco Bay avifaunas. J Archaeol Sci 34:374–391Google Scholar
  28. Brugal J-P (2000) Comments on M.C. Stiner et al.’s “The tortoise and the hare: small game use, the broad spectrum revolution and Palaeolithic demography”. Curr Anthropol 41:62–63Google Scholar
  29. Cochard D (2004) Les Léporidés dans la subsistence paléolithique du Sud de la France. Université Bordeaux I, DissertationGoogle Scholar
  30. Cochard D, Brugal JP, Morin E, Meignen L (2012) Evidence of small fast game exploitation in the Middle Paleolithic of Les Canalettes Aveyron, France. Quat Int 264:32–51Google Scholar
  31. Cohen A, Serjeantson D (1996) A manual for the identification of bird bones from archaeological sites. Archeotype Publications Ltd, London, Revised versionGoogle Scholar
  32. Cortes-Sanchez M, Morales-Muñiz A, Simón-Vallejo MD, Lozano-Francisco MC, Vera-Peláez JL, Finlayson C, Rodríguez-Vidal J, Delgado-Huertas A, Jiménez-Espejo FK, Martínez-Ruiz F, Martínez-Aguirre MA, Pascual-Granged AJ, Berguedà-Zapata MM, Gibaja-Bao JF, Riquelme-Cantal JA, López-Sáez JA, Rodrigo-Gámiz M, Sakai S, Sugisaki S, Finlayson G, Fa DA, Bicho NF (2011) Earliest known use of marine resources by Neanderthals. PLoS One 6(9):e24026Google Scholar
  33. Cruz I (2005) La representación de partes esqueléticas de aves. Patrones naturales e interpretación arqueológica Archaeofauna 14:69–81Google Scholar
  34. Cruz I (2008) Avian and mammalian bone taphonomy in southern continental Patagonia: a comparative approach. Quat Int 180:30–37Google Scholar
  35. Daujeard C (2008) Exploitation du milieu animal par les Néandertaliens dans le Sud-Est de la France. British Archaeological Reports International Series, S1867. Archaeopress, OxfordGoogle Scholar
  36. Daujeard C, Fernandes P, Guadelli JL, Moncel MH, Santagata C, Raynal JP (2012) Neanderthal subsistence strategies in Southeastern France between the plains of the Rhone Valley and the mid-mountains of the Massif Central (MIS 7 to MIS 3). Quat Int 252:32–47Google Scholar
  37. Daujeard C, Moncel M-H, Raynal J-P, Argant A, Béarez P, Blasco R, Brochard S, Courty M-A, Crégut-Bonnoure É, Delvigne V, Desclaux E, Fernandes P, Foury Y, Gallotti R, Lafarge A, Lateur N, Le Pape J-M, Manzano A, Piboule M, Rufà A, Roger T, Rué M, Tallet P (2014) La Grotte des Barasses II. Balazuc (Ardèche). Rapport de synthèse 2011–2013. Service Régional d’Archéologie de Rhône-Alpes, LyonGoogle Scholar
  38. deFrance SD (2005) Late Pleistocene marine birds from southern Peru: distinguishing human capture from El Niño-induced windfall. J Archaeol Sci 32:1131–1146Google Scholar
  39. Dirrigl FJ (2001) Bone mineral density of wild Turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. J Archaeol Sci 28:817–832Google Scholar
  40. Erbersdobler K (1968) Vergleichend morphologische Untersuchungen an Einzelknochen des postcranialen Skelettes in Mitteleuropa vorkommender mittelgrosser Hühnervögel. Universität München, DissertationGoogle Scholar
  41. Ericson GP (1987) Interpretations of archaeological bird remains: a taphonomic approach. J Archaeol Sci 14:65–75Google Scholar
  42. Finlayson C, Brown K, Blasco R, Rosell J, Negro JJ, Bortolotti GR, Finlayson G, Sánchez Marco A, Pacheco FG, Rodríguez-Vidal J, Carrión JS, Fa DA, Rodríguez Llanes JM (2012) Birds of a feather : Neanderthal exploitation of raptors and corvids. PLoS One 7. doi: 10.1371/journal.pone.0045927
  43. Fiore I, Gala M, Romandini M, Cocca E, Tagliacozzo A, Peresani M (2016) From feathers to food: reconstructing the complete exploitation of avifaunal resources by Neanderthals at Grotta di Fumane, unit A9. Quat Int 421:134–153Google Scholar
  44. Fiorenza L, Benazzi S, Henry AG, Salazar-García DC, Blasco R, Picin A, Wroe SW, Kullmer O (2015) To meat or not to meat? New perspectives on Neanderthal ecology. Yearb Phys Anthropol 156:43–71Google Scholar
  45. Foury Y, Desclaux E, Daujeard C, DeFleur A, Moncel M-H, Raynal J-P (2016) Évolution des faunes de rongeurs en moyenne vallée du Rhône (rive droite, Ardèche, France) au cours du Pléistocène Moyen final et du Pléistocène Supérieur ancien, du MIS 6 au MIS 4. Quaternaire 27:55–79Google Scholar
  46. Gala M., Raynal JP, Tagliacozzo A (2005) Bird remains from Baume Vallée (Haute Loire, France): preliminary results <halshs-00004131>Google Scholar
  47. Gaudzinski-Windheuser S, Roebroeks W (2011) On Neanderthal subsistence in last interglacial forested environments in Northern Europe. In: Conard NJ, Richter J (eds) Neanderthal Lifeways. Subsistence and Technology. Springer, New York, pp 61–71Google Scholar
  48. Griesbach EK (1972) Vergleichend morphologische Untersuchungen an Einzelknochennord – Und Mitteleuripäischer kleinerer Hühnervögel. Universität München, DissertationGoogle Scholar
  49. Guennouni MK (2001) Les lapins du Pleistocene Moyen et Superieur de quelques sites préhistoriques de l’Europe mediterranéenne: Terra-Amata, Orgnac 3, Baume Bonne, La Grotte du Lazaret, La Grotte du Boquete de Zafarraya, Arma delle Manie. Étude paléontologique, archéozoologique et taphonomique. Dissertation, Museum National d’Histoire Naturelle, ParisGoogle Scholar
  50. Hardy BL, Moncel MH (2011) Neanderthal use of fish, mammals, birds, starchy plants and wood 125-250,000 years ago. PLoS One 6. doi: 10.1371/journal.pone.0023768
  51. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, De la Rasilla M, Lazuela Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Fernández Cortés A, Rosas A (2012) Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenchaften 99(8):617–626Google Scholar
  52. Hardy BL, Moncel MH, Daujeard C, Fernandes P, Béarez P, Desclaux E, Chacon Navarro MG, Puaud S, Gallotti R (2013) Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France). Quat Sci Rev 82:23–40Google Scholar
  53. Hargrave LL (1970) Mexican macaws. Comparative osteology and survey of remains from the southwest. Anthropol Pap Univ Arizona 20:1–67Google Scholar
  54. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; spy I and II, Belgium). PNAS 108(2):486–491Google Scholar
  55. Higgins J (1999) Túnel: a case study of avian zooarchaeology and taphonomy. J Archaeol Sci 26:1449–1457Google Scholar
  56. Hockett BS (1999) Taphonomy of carnivore-accumulated rabbit bone assemblage from Picareiro Cave, central Portugal. J Iber Archaeol 1:225–230Google Scholar
  57. Hockett B, Haws JA (2002) Taphonomic and methodological perspectives of leporid hunting during the upper Paleolithic of the Western Mediterranean Basin. J Archaeol Method Theory 9:269–302Google Scholar
  58. Hockett BS, Haws JA (2009) Continuity in animal resource diversity in the Late Pleistocene human diet of Central Portugal. Before Farming 2009:1–14Google Scholar
  59. Krief S, Daujeard C, Moncel M-H, Lamon N, Reynolds V (2015) Flavouring food: the contribution of chimpanzee behaviour to the understanding of Neanderthal calculus composition and plant use in Neanderthal diets. Antiquity 89:464–471Google Scholar
  60. Laroulandie V (2000) Taphonomie et archéologie des oiseaux en grotte: applications aux sites Paléolitiques du Bois-Ragot (Vienne), de Combe Saunière (Dordogne) et de la Vache (Ariège). Université Bordeaux I, DissertationGoogle Scholar
  61. Laroulandie V (2001) Les traces liées à la boucherie, à la cuisson et à la consommation d’oiseaux: apport de l’expérimentation. In: Ortega I, Frère Sautot MC (eds) Bourguignon L. Préhistoire et Approche Expérimentale, Montagnac, pp 97–101Google Scholar
  62. Laroulandie V (2002) Damage to pigeon long bones in pellets of the eagle owl Bubo bubo and food remains of Peregrine falcon, Falco peregrinus: zooarchaeological implications. Acta Zool Cracoviensia 45:331–339Google Scholar
  63. Laroulandie V (2005) Anthropogenic versus non-anthropogenic bird bone assemblages: new criteria for their distinction. In: O’Connor T (ed) Biosphere to lithosphere. New Studies in Vertebrate Taphonomy. Oxbow Books, Oxford, pp 25–30Google Scholar
  64. Laroulandie V (2010) Birds in Archaeology. In: Prummel W, Zeiler JT, Brinkhuizen DC (eds.), Birds in Archaeology. Proceedings of the 6th Meeting of the ICAZ Bird Working Group in Groningen (23.8–27.8.2008). Barkhuis, Groningen University Library, Groningen, pp. 219–232Google Scholar
  65. Laroulandie V, Lefèvre C (2014) The use of avian resources by the forgotten slaves of Tromelin Island (Indian Ocean). Int J Osteoarchaeol 24:407–416Google Scholar
  66. Laroulandie V, Faivre J-P, Gerbe M, Mourre V (2016) Who brought the bird remains to the Middle Palaeolithic site of Les Fieux (Southwestern, France)? Direct evidence of a complex taphonomic story Quat Int 421:116–133Google Scholar
  67. Le Pape JM (2012) Etude archéozoologique et taphonomique de la faune du site paléolithique moyen de la grotte des Barasses II (Balazuc, Ardèche). Master Dissertation, Muséum National d’Histoire Naturelle ParisGoogle Scholar
  68. Lefèvre C, Laroulandie V (2014) Avian skeletal part representation: a case study from offing 2, a hunter-gatherer-fisher site in the Strait of Magellan (Chile). Int J Osteoarchaeol 24:256–264Google Scholar
  69. Lefèvre C, Pasquet E (1994) Les modifications post-mortem chez les oiseaux: l’exemple de l’avifaune holocène de Patagonie australe. Artefacts 9:217–229Google Scholar
  70. Livingston SD (1989) The taphonomic interpretation of avian skeletal part frequencies. J Archaeol Sci 16:537–547Google Scholar
  71. Lloveras L, Moreno-García M, Nadal J (2008) Taphonomic analysis of leporid remains obtained from modern Iberian lynx (Lynx pardinus) scats. J Archaeol Sci 35:1–13Google Scholar
  72. Lloveras L, Moreno-García M, Nadal J, Zilhao J (2011) Who brought in the rabbits? Taphonomical analysis of Mousterian and Solutrean leporid accumulations from Gruta do Caldeirao (Tomar, Portugal). J Archaeol Sci 38:2434–2449Google Scholar
  73. Lloveras L, Moreno-García M, Nadal J (2012) Feeding the foxes: an experimental study to assess their taphonomic signature on leporid remains. Int J Osteoarchaeol 22:577–590Google Scholar
  74. Lloveras L, Nadal J, Moreno-García M, Thomas R, Anglada J, Baucells J, Martorell C, Vilasís D (2014a) The role of the Egyptian vulture (Neophron percnopterus) as a bone accumulator from North-eastern Iberia. J Archaeol Sci 44:76–90Google Scholar
  75. Lloveras L, Thomas R, Lourenço R, Caro J, Dias A (2014b) Understanding the taphonomic signature of Bonelli’s eagle (Aquila fasciata). J Archaeol Sci 49:455–471Google Scholar
  76. Lloveras L, Thomas R, Cosso A, Pinyol C, Nadal J (2016) When wildcats feed on rabbits: an experimental study to understand the taphonomic signature of European wildcats (Felis silvestris silvestris). Archaeol Anthropol Sci. doi: 10.1007/s12520-016-0364-6 Google Scholar
  77. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, New YorkGoogle Scholar
  78. Mallye JB, Cochard D, Laroulandie V (2008) Accumulations osseuses en périphérie de terriers de petits carnivores: les stigmates de prédation et de fréquentation. Ann Paleontol 94:187–208Google Scholar
  79. Martínez Valle R, Guillem Calatayud PM, Villaverde Bonilla V (2016) Bird consumption in the final stage of Cova Negra (Xátiva, Valencia). Quat Int 421:85–102Google Scholar
  80. Mlíkovský J (1996) New data on the food of the white-tailed sea eagle (Haliaetus albicilla) in the Svjatoj Nos wetlands, Lake Baikal. Buteo 8:115–118Google Scholar
  81. Moncel MH, Debard É, Desclaux E, Dubois HM, Lamarque F, Patou-Mathis M, Vilette P (2002) Le cadre de vie des hommes du Paléolithique moyen (stades isotopiques 6 et 5) dans le site de Payre (Rampon, Ardèche): d’une grotte à un abri sous roche effondré. Bullentin la Société Préhistorique Française 99:249–273Google Scholar
  82. Moncel M-H, Daujeard C, Cregut-Bonnoure É, Boulbes N, Puaud S, Debard É, Bailon S, Desclaux E, Escude É, Roger T, Dubar M (2010) Nouvelles données sur les occupations humaines du début du Pléistocène Supérieur de la moyenne vallée du Rhône (France). Les sites de l’Abri des Pêcheurs, de la Baume Flandin, de l'Abri du Maras et de la Grotte du Figuier (Ardèche). Quaternaire 4:385–411Google Scholar
  83. Monchot H, Gendron D (2011) Les restes osseux d'une tanière de renard en milieu périglaciaire (Île Digges, rive sud du Detroit d'Hudson, Canada). In: Laroulandie V, Mallye J-B, Denys C (eds.) Taphonomie des petits vertébrés: référentiels et transferts aux fossiles. Archaeopress, BAR International Series 2269, Oxford, pp 65–76Google Scholar
  84. Mondini M (2000) Tafonomía de abrigos rocosos de la Puna. Formación de conjuntos escatológicos por zorros y sus implicaciones arqueológicas Archaeofauna 9:151–164Google Scholar
  85. Morin E (2012) Reassessing Paleolithic subsistence. The Neandertal and modern human foragers of Saint-Césaire. Cambridge University Press, New YorkGoogle Scholar
  86. Morin E, Laroulandie V (2012) Presumed symbolic use of diurnal raptors by Neanderthals PLoS One:7. doi: 10.1371/journal.pone.0032856
  87. Mourer-Chauviré C (1972) Les oiseaux du Würmien II de la grotte de l’Hortus (Valflaunés, Hérault). Études quaternaires 1:271–288Google Scholar
  88. Negro JJ, Blasco R, Rosell J, Finlayson C (2016) Potential exploitation of avian resources by fossil hominins : an overview from ethnographic and historical data. Quat Int 421:6–11Google Scholar
  89. Oliver JS, Graham RW (1994) A catastrophic kill of ice-trapped coots; time-averaged versus scavenger-specific disarticulation patterns. Paleobiology 20:229–244Google Scholar
  90. Payne S, Munson PJ (1985) Ruby and how many squirrels? The destruction of bones by dogs. In: Fieller NRJ, Gilbertson DD, Ralph NGA (eds) Palaeoecological investigations. Research design, methods and date analysis, Symposium of the association for environmental archaeology, vol 266. BAR International Series, Oxford, pp 31–39Google Scholar
  91. Peresani M, Fiore I, Gala M, Romandini M, Tagliacozzo A (2011) Late Neandertals and the intentional removal of feathers as evidenced from bird bone taphonomy at Fumane Cave 44 ky B.P., Italy. PNAS 108:3888–3893Google Scholar
  92. Radovčić D, Sršen AO, Radovčić J, Frayer DW (2015) Evidence for Neandertal jewelry: modified white-tailed eagle claws at Krapina. PLoS One 10:e0119802Google Scholar
  93. Ramos-Muñoz J, Cantillo-Duarte JJ, Bernal-Casasola D, Barrena-Tocino A, Domínguez-Bella S, Vijande-Vila E, Clemente-Conte I, Gutiérrez-Zugasti I, Soriguer-Escofet M, Almisas-Cruz S (2016) Early use of marine resources by Middle/Upper Pleistocene human societies: the case of Benzu rockshelter (northern Africa). Quat Int 407:6–15Google Scholar
  94. Richard M, Falguères C, Pons-Branchu E, Bahain JJ, Voinchet P, Lebon M, Valladas H, Dolo JM, Puaud S, Rué M, Daujeard C, Moncel MH, Raynal JP (2015) Contribution of ESR/U-series dating to the chronology of late Middle Palaeolithic sites in the middle Rhône valley, southeastern France. Quat Geochronol 30:529–534Google Scholar
  95. Rodríguez-Hidalgo A, Lloveras L, Moreno-García M, Saladié P, Canals A, Nadal J (2013) Feeding behaviour and taphonomic characterization of non-ingested rabbit remains produced by the Iberian lynx (lynx pardinus). J Archaeol Sci 40:3031–3045Google Scholar
  96. Rodríguez-Hidalgo A, Saladié P, Marín J, Canals A (2015) Expansion of the referential framework for the rabbit fossil accumulations generated by Iberian lynx. Palaeogeogr Palaeoclimatol Palaeoecol 418:1–11Google Scholar
  97. Rodríguez-Hidalgo A, Saladié P, Marín J, Canals A (2016) Bird-bone modifications by Iberian lynx: a taphonomic analysis of non-ingested red-legged partridge remains. Quat Int 421:228–238Google Scholar
  98. Roger T (2004) L’avifaune du Pléistocène moyen et supérieur du bord de la Méditerranée européenne : Orgnac 3, Lazaret (France), Caverna delle Fate, Arma delle Manie (Italie), Kalamakia (Grèce), Karain E (Turquie). Paléontologie, Taphonomie et Paléoécologie. Dissertation, Institut de Paléontologie Humaine, Muséum National d’Histoire Naturelle ParisGoogle Scholar
  99. Romandini M, Peresani M, Laroulandie V, Metz L, Pastoors A, Vaquero M, Slimak L (2014) Convergent evidence of eagle talons used by late Neanderthals in Europe: a further assessment on symbolism. PLoS One 9. doi: 10.1371/journal.pone.0101278
  100. Romandini M, Fiore I, Gala M, Cestari M, Guida G, Tagliacozzo A, Peresani M (2016) Neanderthal scraping and manual handling of raptors wing bones: evidence from Fumane Cave. Experimental activities and comparison. Quat Int 421:154–172Google Scholar
  101. Rufà A, Blasco R, Rivals F, Rosell J (2016a) Who eats whom? Taphonomic analysis of the avian record from the Middle Paleolithic site of Teixoneres Cave (Moià, Barcelona, Spain). Quat Int 421:46–61Google Scholar
  102. Rufà A, Blasco R, Roger T, Moncel M-H (2016b) What is the taphonomic agent responsible for the avian accumulation? An approach from the Middle and early Late Pleistocene assemblages from Payre and Abri des Pêcheurs (Ardèche, France). Quat Int 421:103–115Google Scholar
  103. Salazar-García DC, Power RC, Sanchis A, Villaverde V, Walker MJ, Henry AG (2013) Neanderthal diets in central and southeastern Mediterranean Iberia. Quat Int 318:3–18Google Scholar
  104. Sanchis A (2012) Los lagomorfos del Paleolítico medio en la vertiente mediterránea ibérica, Serie de trabajos varios 113. Servicio de investigación prehistórica del Museo de Prehistoria de Valencia. Diputación de Valencia, ValenciaGoogle Scholar
  105. Schmitt DN, Juell KE (1994) Toward the identification of coyote scatological faunal accumulations in archaeological contexts. J Archaeol Sci 21:249–262Google Scholar
  106. Serjeantson D (2009) Birds. Cambridge University Press, New YorkGoogle Scholar
  107. Steadman DW, Plourde A, Burley DV (2002) Prehistoric butchery and consumption of birds in the Kingdom of Tonga, South Pacific. J Archaeol Sci 29:571–584Google Scholar
  108. Stiner MC (2001) Thirty years on the “broad spectrum revolution” and Paleolithic demography. PNAS 19:6993–6996Google Scholar
  109. Stiner M, Kuhn S, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237Google Scholar
  110. Stringer CB, Finlayson JC, Barton RNE, Fernández-Jalvo Y, Cáceres I, Sabin RC, Rhodes EJ, Currant P, Rodríguez-Vidal J, Giles-Pacheco F, Riquelme-Cantal J (2008) Neanderthal exploitation of marine mammals in Gibraltar. PNAS 105:14319–14324Google Scholar
  111. Tomek T, Bochenski ZM (2000) The comparative osteology of European corvids (Aves: Corvidae), with a key to the identification of their skeletal elements. Institute of Systematics and Evolution of Animals. Polish Academy of Sciences, KrákowGoogle Scholar
  112. Woelfle E (1967) Vergleichend morphologische Untersuchungen an Eizelknochen des postcranialen Skelettes in Mitteleuropa vorkommender Enten, Halbgänse und Säger. Universität München, DissertationGoogle Scholar
  113. Young A, Márquez-Grant N, Stillman R, Smith MJ, Korstjens AH (2015a) An investigation of red fox (Vulpes vulpes) and Eurasianbadges (Meles meles) scavenging, scattering, and removal of deer remains: forensic implications and applications. J Forensic Sci 60:39–55Google Scholar
  114. Young A, Stillman R, Smith MJ, Korstjens AH (2015b) Scavenger species-typical alteration to bone: using bite mark dimensions to identify scavengers. J Forensic Sci 60:1426–1435Google Scholar
  115. Zaatari SE, Grine FE, Ungar PS, Hublin J-J (2016) Neandertal versus modern human dietary responses to climatic fluctuations. PLoS One 11(4):e0153277. doi: 10.1371/journal.pone.0153277 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut Català de Paleoecologia Humana i Evolució Social (IPHES)TarragonaSpain
  2. 2.Àrea de PrehistòriaUniversitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Centro Nacional de Investigación en Evolución Humana (CENIEH)BurgosSpain
  4. 4.NiceFrance
  5. 5.Archéologie des Sociétés Méditerranéennes (ASM, UMR 5140)Université Paul-Valéry Montpellier 3MontpellierFrance
  6. 6.Histoire Naturelle de l’Homme Préhistorique (HNHP, UMR 7194), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRSUniversité de Perpignan Via Domitia; Institut de Paléontologie HumaineParisFrance

Personalised recommendations