Archaeological and Anthropological Sciences

, Volume 10, Issue 6, pp 1485–1502 | Cite as

The potential of stable Cu isotopes for the identification of Bronze Age ore mineral sources from Cyprus and Faynan: results from Uluburun and Khirbat Hamra Ifdan

  • Moritz JansenEmail author
  • Andreas Hauptmann
  • Sabine Klein
  • Hans-Michael Seitz
Original Paper


Copper isotope ratios differ between hypogene sulfidic, supergene sulfidic and oxidized ore sources. Traditional lead isotope signatures of ancient metals are specific to deposits, while Cu isotope signatures are specific to the types of ore minerals used for metal production in ancient times. Two methodological case studies are presented: First, the mining district of Faynan (Jordan) was investigated. Here, mainly oxidized copper ores occur in the deposits. The production of copper from Fayan’s ore sources is confirmed by the measurement of the Cu isotope signature of ingots from the Early Bronze Age metal workshop from Khirbat Hamra Ifdan. Based on our results illustrating differences in the Cu isotope composition between the ore mineralizations from Timna (Israel) and Faynan, it is now possible to determine these prehistoric mining districts from which copper artifacts originated by combining trace elements and Pb isotopes with Cu isotopes. The second case study presents data on Late Bronze Age copper production in Cyprus. Oxhide ingots from the shipwreck of Uluburun (Turkey) were tested for their lead isotope signatures and assigned to Cypriot deposits in the recent decades. The oxhide ingots from Uluburun show a Cu isotope signature which we also found for oxidized copper ores from Cyprus, while younger oxhide ingots as well as metallurgical slag from the Cypriot settlements Kition and Enkomi show a different signature which might be due to the use of sulfidic ore sources from a greater depth of deposits. We assert that there could be a chronological shift from oxidized to sulfidic ore sources for the copper production in Cyprus, requiring different technologies. Therefore, Cu isotopes can be used as a proxy to reconstruct mining and induced smelting activities in ancient times.


Eastern Mediterranean Bronze Age Cu isotopes Copper ingots Oxhide ingots Provenance studies MC-ICP-MS 



This study was funded by the Leibniz-Kompetenzzentrum Archäometrie at the German Mining Museum (Deutsches Bergbau-Museum). In previous studies, Thomas E. Levy and Cemal Pulak provided the opportunity to take samples from Bronze Age ingots. We are grateful for the support of Vasiliki Kassianidou, George Hadjigeorghiou, Constantinos Xydas, and Lazaros Georgios during a stay in Cyprus for sampling ore specimens in the field and additional ones from the survey collection of Ulrich Zwicker. We thank Wolfgang Steger and Michael Bode who supported the sample preparation in the clean lab in Bochum. Sincere thanks are given to the anonymous reviewers for their valuable comments.


  1. Albarède F (2004) The stable isotope geochemistry of copper and zinc. Rev Mineral Geochem 55:409–427. doi: 10.2138/gsrmg.55.1.409 CrossRefGoogle Scholar
  2. Anver U (2002) Studies in the material and spiritual culture of the Negev and Sinai populations, during the 6th-3rd millennia B.C. Dissertation, Hebrew University of JerusalemGoogle Scholar
  3. Artioli G, Baumgarten B, Marelli M, Giussani B, Recchia S, Nimis P, Giunti I, Angelini I, Omenetto P (2008) Chemical and isotopic tracers in Alpine copper deposits: geochemical links between mines and metal. Geo Alp 5:139–148Google Scholar
  4. Asael D, Matthews A, Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254. doi: 10.1016/j.chemgeo.2007.06.007 CrossRefGoogle Scholar
  5. Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem Geol 262:147–158. doi: 10.1016/j.chemgeo.2009.01.015 CrossRefGoogle Scholar
  6. Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I (2012) Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chem Geol 310–311:23–35. doi: 10.1016/j.chemgeo.2012.03.021
  7. Balliana E, Aramendia M, Resano M, Barbante C, Vanhaecke F (2013) Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Anal Bioanal Chem 405:2973–2986. doi: 10.1016/j.chemgeo.2009.01.015 CrossRefGoogle Scholar
  8. Bendall C (2003) The application of trace element and isotopic analyses to the study of Celtic gold coins and their metal sources. Dissertation, University of FrankfurtGoogle Scholar
  9. Bruce JL, Manglis CP, Creveling DM (1937) Antiquities in the mines of Cyprus. In: Gjerstad E, Lindros J, Sjöqvist E, Westholm A (eds) The Swedish Cyprus Expedition III, Stockholm, pp 639–671Google Scholar
  10. Conrad HG, Rothenberg B (1980) Antikes Kupfer im Timna-Tal – 4000 Jahre Bergbau und Verhüttung in der Arabah (Israel). Der Anschnitt Beiheft 1, BochumGoogle Scholar
  11. Constantinou G (1982) Geological features and ancient exploitation of the cupriferous sulphide orebodies of Cyprus. In: Muhly JD, Maddin R, Karageorghis V (eds) Early metallurgy in Cyprus, 4000–500 B.C. Acta of the International Archaeological Symposium, Nicosia, pp 13–24Google Scholar
  12. Desaulty AM, Telouk P, Albalat E, Albarède F (2011) Isotopic Ag-Cu-Pb record of silver circulation through 16th-18th century Spain. Proc Natl Acad Sci U S A 108:9002–9007. doi: 10.1073/pnas.1018210108 CrossRefGoogle Scholar
  13. Dikaios P (1969–71) Enkomi. Excavations 1948–1958. 4 volumes, MainzGoogle Scholar
  14. Drenka A (2003) New excavations in the chalcolithic mine T of Timna. Preliminary report of the excavations March-May 2001. Institute for Archaeo-Metallurgical Studies Newsletter 23:21–26Google Scholar
  15. Durali-Müller S (2005) Roman lead and copper mining in Germany—their origin and development through time, deduced from lead and copper isotope provenance studies. Dissertation, University of FrankfurtGoogle Scholar
  16. Gale NH (1999) Lead isotope characteristics of the ore deposits of Cyprus and Sardinia and its application to the discovery of the sources of copper for Late Bronze Age oxhide ingots. In: Young SMM, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity. British Archaeological Reports International Series 792, Oxford, pp 110–133Google Scholar
  17. Gale NH (2011) Copper oxhide ingots and lead isotope provenancing. In: Betancourt PP, Ferrence SC (eds) Metallurgy: understanding how learning why. Studies in honor of James D. Muhly, Philadelphia, pp 213–220Google Scholar
  18. Gale NH, Stos-Gale ZA (1984) Lead isotope and chemical analyses of silver, lead and copper artifacts from Pyla-Kokkinokremos. In: Karageorghis V, Demas M (eds) Pyla Kokkinokremos—a late 13th century BC fortified settlement in Cyprus. Report of the Department of Antiquities Cyprus 1984, Nicosia, pp 96–103Google Scholar
  19. Gale NH, Stos-Gale ZA (1986) Oxhide copper ingots in Crete and Cyprus and the Bronze Age metals trade. The Annual of the British School at Athens 81:81–100CrossRefGoogle Scholar
  20. Gale NH, Stos-Gale ZA (2012) The role of the Apliki mine region in the post c. 1400 BC copper production and trade networks in Cyprus and in the wider Mediterranean. In: Kassianidou V, Papasavvas G (eds) Eastern Mediterranean metallurgy and metalwork in the second millennium BC. Oxbow Books, Llandysul, p 70–82Google Scholar
  21. Gale NH, Woodhead AP, Stos-Gale ZA, Walder A, Bowen I (1999) Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. Int J Mass Spectrom 184:1–9. doi: 10.1016/S1387-3806(98)14294-X CrossRefGoogle Scholar
  22. Graham S, Pearson N, Jackson S, Griffin W, O’Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfide from the Grasberg Cu-Au deposit. Chem Geol 207:147–169. doi: 10.1016/j.chemgeo.2004.02.009 CrossRefGoogle Scholar
  23. Gramlich JW, Machlan LA, Barnes IL, Paulsen PJ (1989) Absolute isotopic abundance ratios and atomic weight of a reference sample of nickel. J Res Natl Bur Stand 94:347–356. doi: 10.6028/jres.094.034 Google Scholar
  24. Hauptmann A (2007) The archaeometallurgy of copper—evidence from Faynan, Jordan. Natural Science in Archaeology, Berlin/HeidelbergCrossRefGoogle Scholar
  25. Hauptmann A (2009) Lead isotope analysis and the origin of Sardinian metal objects. In: Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A (eds) Oxhide ingots in the Central Mediterranean. CNR - Istituto per gli Studi Micenei ed Egeo-Anatolici, Rome, p 499–514Google Scholar
  26. Hauptmann A (2011) Slags from the Late Bronze Age metal workshops at Kition and Enkomi, Cyprus. In: Betancourt PP, Ferrence SC (eds) Metallurgy: understanding how learning why. Studies in honor of James D. Muhly, Philadelphia, pp 189–202Google Scholar
  27. Hauptmann A, Maddin R, Prange M (2002) On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun. B Am Sch Oriental Re 328:1–30. doi: 10.2307/1357777 Google Scholar
  28. Hauptmann A, Schmitt-Strecker S, Levy TE, Begemann F (2015) On Early Bronze Age copper bar ingots from the Southern Levant. B Am Sch Oriental Re 373:1–24. doi: 10.5615/bullamerschoorie.373.0001 Google Scholar
  29. Hull S, Fayek M, Mathien FJ, Shelley P, Durand KR (2008) A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. J Archaeol Sci 35:1355–1369. doi: 10.1016/j.jas.2007.10.001 CrossRefGoogle Scholar
  30. Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from Besshi-type Volganogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Econ Geol 106:307–316. doi: 10.2113/econgeo.106.2.307 CrossRefGoogle Scholar
  31. Karageorghis V, Kassianidou V (1999) Metalworking and recycling in Late Bronze Age Cyprus—the evidence from Kition. Oxford J Archaeol 18:171–188. doi: 10.1111/1468-0092.00078 CrossRefGoogle Scholar
  32. Kassianidou V (2009) Oxhide ingots in Cyprus. In: Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A (eds) Oxhide ingots in the Central Mediterranean, Rome, pp 41–81Google Scholar
  33. Klein S, Lahaye Y, Brey GP, von Kaenel HM (2002) Blei- und Kupferisotopenanalysen an Kupfermünzen der römischen Kaiserzeit. Berichte der Deutschen Mineralogischen Gesellschaft. Beiheft zum. Eur J Mineral 14:84Google Scholar
  34. Klein S, Lahaye Y, Brey GP (2004) The early Roman imperial aes coinage II: tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius. Archaeometry 46:469–480. doi: 10.1111/j.1475-4754.2004.00168.x CrossRefGoogle Scholar
  35. Klein S, Rico C, Lahaye Y, von Kaenel HM, Domergue C, Brey GP (2007) Copper ingots from the western Mediterranean Sea: chemical characterisation and provenance studies through lead- and copper isotope analyses. J Roman Archaeol 20:203–221. doi: 10.1017/S1047759400005377 CrossRefGoogle Scholar
  36. Klein S, Domergue C, Lahaye Y, Brey GP, von Kaenel HM (2009) The lead and copper isotopic composition of copper ores from the Sierra Morena (Spain). J Iber Geol 35:59–68Google Scholar
  37. Klein S, Brey GP, Durali-Müller S, Lahaye Y (2010) Characterisation of the raw metal sources used for the production of copper and copper based objects with copper isotopes. Archaeol Anthropol Sci 2:45–56. doi: 10.1007/s12520-010-0027-y CrossRefGoogle Scholar
  38. Knapp AB, Kassianidou V, Donnelly M (2001) Copper smelting in Late Bronze Age Cyprus—the excavations at Politiko Phorades. Near East Archaeol 64:204–210. doi: 10.2307/3210830 CrossRefGoogle Scholar
  39. Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350. doi: 10.1016/j.chemgeo.2003.08.006 CrossRefGoogle Scholar
  40. Levy TE, Adams RB, Hauptmann A, Prange M, Schmitt-Strecker S, Najjar M (2002) Early Bronze Age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity 76:425–437. doi: 10.1017/S0003598X00090530 CrossRefGoogle Scholar
  41. Lobo L, Degryse P, Shortland A, Eremin K, Vanhaecke F (2014) Copper and antimony isotopic analysis via multi-collector ICP-mass spectrometry for provenancing ancient glass. J Anal Atom Spectrom 29:58–64. doi: 10.1039/C3JA50303H CrossRefGoogle Scholar
  42. Lo Schivao F (2009) Oxhide ingots in Nuragic Sardinia. In: Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A (eds) Oxhide ingots in the Central Mediterranean. CNR - Istituto per gli Studi Micenei ed Egeo-Anatolici, Rome, p 225–410Google Scholar
  43. Lo Schiavo F, Maddin R, Merkel JF, Muhly JD, Stech T (1990) Analisi Metallurgiche e Statistiche sui Lingotti di Rame della Sardegna/Metallographic and Statistical Analyses of Copper Ingots from Sardinia, OzieriGoogle Scholar
  44. Maddin R (1989) The copper ingots from the Kas Shipwreck. In: Hauptmann A, Pernicka E, Wagner G (ed) Old Word archaeometallurgy—Archäometallurgie der Alten Welt. Proceedings of the International Symposium, Heidelberg 1987. Der Anschnitt Beiheft 7, Bochum, pp 99–105Google Scholar
  45. Maréchal C, Albarède F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66:1499–1509. doi: 10.1016/S0016-7037(01)00815-8 CrossRefGoogle Scholar
  46. Maréchal CN, Telouk P, Albarede F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:252–273. doi: 10.1016/S0009-2541(98)00191-0 CrossRefGoogle Scholar
  47. Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228. doi: 10.1016/j.gca.2006.06.1369 CrossRefGoogle Scholar
  48. Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009a) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6. doi: 10.1016/j.gexplo.2008.09.004 CrossRefGoogle Scholar
  49. Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C (2009b) The history of the United States cent revealed through copper isotope fractionation. J Archaeol Sci 36:430–433. doi: 10.1016/j.jas.2008.09.029 CrossRefGoogle Scholar
  50. Mathur R, Wilson M, Parra ML (2014) Challenges of using copper isotope ratios to trace the origin of native copper artifacts: an example from the Keweenaw Peninsula. Ann Carnegie Museum 82:241–245. doi: 10.2992/007.082.0304
  51. Muhly JD (1991) The development of copper metallurgy in Late Bronze Age Cyprus. In: Gale NH (ed) Bronze Age trade in the Mediterranean. Studies in Mediterranean Archaeology 90, Jonsered, pp 180–197Google Scholar
  52. Muhly JD, Maddin R, Wheeler TS (1980) The oxhide ingots from Enkomi and Mathiati and Late Bronze Age copper smelting in Cyprus. Report of the Department of Antiquities Cyprus 1980, Nicosia, pp 84–89Google Scholar
  53. Muhly JD, Maddin R, Stech T (1988) Cyprus, Crete and Sardinia—copper oxhide ingots and the Bronze Age metals trade. Report of the Department of Antiquities Cyprus 1988, Nicosia, pp 281–298Google Scholar
  54. Pulak C (2000) The copper and tin ingots from the Late Bronze Age shipwreck at Uluburun. In: Yalcin Ü (ed) Anatolian Metal I. Der Anschnitt Beiheft 13, Bochum, pp 137–157Google Scholar
  55. Rothenberg B (1996–97) Researches in the Southern Arabah 1959–1990. Summary of thirty years of archaeo-metallurgical field work in the Timna Valley, the Wadi Amram and the Southern Arabah (Israel). Arx 2–3:5–42Google Scholar
  56. Rothenberg B, Shaw CT (1990) The discovery of a copper mine and smelter from the end of the Early Bronze Age (EB IV) in the Timna valley. Institute for Archaeo-Metallurgical Studies Newsletter 15-16:1–8Google Scholar
  57. Shields WR, Murphy TJ, Garner EL (1964) Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper. J Res Natl Bur Stand 68A:589–592. doi: 10.6028/jres.068A.056 CrossRefGoogle Scholar
  58. Stos-Gale ZA (2011) “Biscuits with ears:” a search for the origin of the earliest oxhide ingots. In: Betancourt PP, Ferrence SC (eds) Metallurgy: understanding how learning why. Studies in honor of James D. Muhly, Philadelphia, pp 221–229Google Scholar
  59. Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeol Anthropol Sci 1:195–213. doi: 10.1007/s12520-009-0011-6 CrossRefGoogle Scholar
  60. Stos-Gale ZA, Maliotis G, Gale NH, Annetts N (1997) Lead isotope characteristics of the Cyprus copper ore deposits applied to provenance studies of copper oxhide ingots. Archaeometry 39:83–123. doi: 10.1111/j.1475-4754.1997.tb00792.x CrossRefGoogle Scholar
  61. Tylecote RF (1982) The Late Bronze Age: copper and bronze metallurgy at Enkomi and Kition. In: Muhly JD, Maddin R, Karageorghis V (eds) Early metallurgy in Cyprus, 4000–500 B.C. Acta of the International Archaeological Symposium, Nicosia, pp 81–100Google Scholar
  62. Willies L (1991) Ancient copper mining at Wadi Amram, Israel—an archaeological survey. Bulletin of the Peak District Mines Historical Society 11:109–138Google Scholar
  63. Woodhead AP, Gale NH, Stos-Gale ZA (1999) An investigation into the fractionation of copper isotopes and its possible application to archaeometallurgy. In: Young SMM, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity. British Archaeological Reports International Series 792, Oxford, pp 134–139Google Scholar
  64. Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149. doi: 10.1016/S0009-2541(99)00076-5 CrossRefGoogle Scholar
  65. Zwicker U (1985) Investigations of samples from the metallurgical workshops at Kition. In: Karageorghis V, Demas M (eds) Excavations at Kition—V. The Pre-Phoenician levels I, Nicosia, pp 403–429Google Scholar
  66. Zwicker U, Virdis P, Ceruti ML (1980) Investigations of copper ore, prehistoric copper slag and copper ingots from Sardinia. In: Craddock PT (ed) Scientific studies in early mining and extractive metallurgy, London, pp 135–163Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Moritz Jansen
    • 1
    Email author
  • Andreas Hauptmann
    • 2
  • Sabine Klein
    • 2
  • Hans-Michael Seitz
    • 3
  1. 1.Center for the Analysis of Archaeological MaterialsUniversity of Pennsylvania Museum of Archaeology and AnthropologyPhiladelphiaUSA
  2. 2.Forschungsstelle Archäologie und MaterialwissenschaftenDeutsches Bergbau-MuseumBochumGermany
  3. 3.Institut für GeowissenschaftenGoethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations