Spinal dysraphism at the Syrian Neolithic site of Dja’de el-Mughara

  • F. Estebaranz-Sánchez
  • L. M. Martínez
  • M. Alrousan
  • Bérénice Chamel
  • M. Molist
  • E. Coqueugniot
  • A. Pérez-Pérez
Original Paper

Abstract

Spina bifida is a neurulation defect that results in an incomplete closing of the backbone, as well as membranes surrounding the spinal cord. Several archaeological cases of spina bifida have been reported, remarkably during the Bronze Age and Classic Era. However, few prehistoric cases have been recovered, with the exception of the important Epipaleolithic Iberomaurusian site of Taforalt (Morocco). This article describes the first case of a spina bifida condition during the Neolithic of Near East, at the Syrian site of Dja-de el-Mughara. Although at the onset of the Syrian civil war, image record has enabled the description of a complete spina bifida case. Two other possible cases have not been confirmed, since it was impossible to reevaluate the osteological material hosted at the field laboratory in Dja-de el-Mughara. However, due to the low incidence of this neural tube disorder (NTD), we argue that it could be associated to a genetic disorder rather than to environmental factors such as arsenic intake or a deficient diet.

Keywords

Spina bifida Dja’de Neolithic Paleopathology Near East Sacrum Syria Neural tube disorders 

References

  1. Albrecht TL, Scutter SD, Henneberg M (2007) Radiographic method to assess the prevalence of sacral spina bifida occulta. Clin Anat 20:170–174CrossRefGoogle Scholar
  2. Alfonso-Durruty MP, Morello F, Calás E (2011) The etiology of porotic hyperostosis and spina bifida oculta in a high latitude hunter-gatherers. AJPA 114(Suppl. 52):73Google Scholar
  3. Alles AJ, Sulik KK (1990) Retinoic acid-induced spina bífida: evidence for a pathogenetic mechanism. Development 108:73–81Google Scholar
  4. Antony AC (2003) Vegetarianism and vitamin B-12 (cobalamin) deficiency (2003). Am J Clin Nutr 78:3–6Google Scholar
  5. Armstrong SD (2012) Spina bifida at a pre-Columbian Cuban site: a molecular and paleoepidemiological perspective. Dissertation, University of ManitobaGoogle Scholar
  6. Armstrong S, Cloutier L, Arredondo C, Roksandic M, Matheson C (2013) Spina bifida in a pre-Columbian Cuban population: a paleoepidemiological study of genetic and dietary risk factors. Int J Paleopathology 3:19–29CrossRefGoogle Scholar
  7. Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disab Res Rev 16(1):6–15CrossRefGoogle Scholar
  8. Aufderheide AC, Rodríguez-Martín C (1998) Human paleopathology. Cambridge University Press, CambridgeGoogle Scholar
  9. Avrahami E, Frishman E, Fridman Z, Azor M (1994) Spina bifida occulta of S1 is not an innocent finding. Spine (Phila Pa 1976) 19(1):12–15CrossRefGoogle Scholar
  10. Baker O, Lee OYC, Wu HHT, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O’Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer N, Le Mort F, Perrin P, Gourichon L, Dutailly B (2015) Human tuberculosis predates domestication in ancient Syria. Tuberculosis 95:S4–S12CrossRefGoogle Scholar
  11. Barringer JL, Reilly PA (2006) Chapter 4: arsenic in groundwater: a summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility. In: Bradley PM (ed) Current perspectives in contaminant hydrology and water resources sustainability. InTech, Rijeka (Croatia), pp 83–116Google Scholar
  12. Barf HA, Verhoef M, Jennekens-Schinkel A, Post MWM, Gooskens RHJM, Prevo AJH (2003) Cognitive status of young adults with spina bífida. Dev Med Child Neurol 45:813–820CrossRefGoogle Scholar
  13. Bellinger DC (2005) Teratogen update: lead and pregnancy. Birth defects res. A: Clin Mol Teratol 73:409–420Google Scholar
  14. Berry AC (1975) Factors affecting the incidence of non-metrical skeletal variants. J Anat 120(3):519–535Google Scholar
  15. Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS, Robbins JM (2008) Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res (Part A) 82:527–532CrossRefGoogle Scholar
  16. Black MM (2008) Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 29(2):126–131CrossRefGoogle Scholar
  17. Bradai R, Robert E (1998) Prenatal ultrasonographic diagnosis in the epileptic mother on valproic acid. Retrospective study of 161 cases in the central eastern France register of congenital malformations. J Gynecol Obstet Biolo Reprod (Paris) 27:413–419Google Scholar
  18. Brailsford JF (1953) The radiology of bones and joints. J & A Churchill, LondonGoogle Scholar
  19. Campillo Álvarez E (2009) Paleopatologías en aborígenes cubanos del sitio arqueológico Canímar Abajo, Matanzas, Cuba. MA thesis, University of Havana, HavanaGoogle Scholar
  20. Casella EB, Valente M, Medeiros de Navarro J, Kok F (2005) Vitamin B12 deficiency in infancy as a cause of development regression. Brain Dev 27:592–594CrossRefGoogle Scholar
  21. Castro M (2004) Arsénico en el agua de bebida de América Latina y su efecto en la salud pública. Hojas de Divulgación Técnica HDT - CEPIS 95:1–12Google Scholar
  22. Ceylan S, Duru S, Ceylan S (2001) Valproic acid sodium-induced bífida occulta in the rat. Neurosurg Rev 24:31–34CrossRefGoogle Scholar
  23. Christidou R, Coqueugniot E, Gourichon L (2009) Neolithic figurines manufactured from phalanges of equids from Dja’de el Mughara, Syria. J Field Archaeol 34(3):319–335CrossRefGoogle Scholar
  24. Chamel B (2014) Bioanthropologie et pratiques funéraires des populations néolithiques du Proche-Orient: l’impact de la Néolithisation (Étude de sept sites syriens (9820–6000 cal. BC). Biological anthropology. Dissertation, Université Lumiére Lyon 2Google Scholar
  25. Chen CP (2008) Syndromes, disorders and maternal risk factors associated with neural tube defects (I). Taiwan J Obstet Gynecol 47(1):1–9CrossRefGoogle Scholar
  26. Cockburn A, Cockburn E, Reyman TA (1998) Mummies, Disease & Ancient Cultures. Cambridge University Press, UKCrossRefGoogle Scholar
  27. Connely J, Colledge S, Dobney K, Vigne JD, Peters J, Stopp B, Manning K, Shennan S (2011) Meta-analysis of zooarchaeological data from SW Asia and SE Europe providesinsight into the origins and spread of animal husbandry. J Archaeol Sci 38:538–545CrossRefGoogle Scholar
  28. Coqueugniot E (1998) Djade el Mughara (Moyen-Euphrate), un village néolithique dans son environnement naturel à la veille de la domestication. In: Fortin M, Aurenche O (eds.) Espace naturel, espace habité en Syrie du Nord (10e-2e millénaires av. J.C.). Canadian Society for Mesopotamian Studies/Lyon: Maison de l’Orient méditerranéen, pp 109–114Google Scholar
  29. Coqueugniot E (2000) Dja’de (Syrie), un village à la veille de la domestication(seconde moitié du 9e millénaire av. J.C.). In: Guilaine J (ed) Les premiers paysans du monde, naissance des agricultures. Errance, Paris, pp 63–79Google Scholar
  30. Coqueugniot H, Dutailly B, Desbarats P, Boulestin B, Pap I, Szikossy I, Baker O, Montaudon M, Panuel M, Karlinger K, Kovács B, Kristóf LA, Pálfi G, Dutour O (2015) Three-dimensional imaging of past skeletal TB: from lesion to process. Tuberculosis 95(1):73–79CrossRefGoogle Scholar
  31. Cornejo-Ponce L, Acarapi-Cartes J (2011) Fractionation and bioavailability of arsenic in agricultural soils: solvent extraction tests and their relevance in risk assessment. J Environ Sci Health, Part A: Toxic/Hazard. Subst Environ Eng 46:1247–1258CrossRefGoogle Scholar
  32. Cornejo-Ponce L, Lienqueo HH, Arriaza BT (2011) Levels of total arsenic in edible fish and shellfish obtained from two coastal sectors of the Atacama Desert in the north of Chile: use of non-migratory marine species as bioindicators of sea environmental pollution. J Environ Sci Health, Part A: Toxic/Hazard. Subst Environ Eng 46:1274–1282CrossRefGoogle Scholar
  33. Danrey V (2000) Dja’de el-Mughara 2000, secterur B. In: E. Coqueugniot (Dir.), Cahiers de fouilles de Dja’de el-Mughara. Archivés at Archéorient, n.p.Google Scholar
  34. Desmeulles V (2001) Les pratiques funéraires du PPNB ancient de Syrie. Étude de cas: Dja’de el Mughara. Master Disertation, Paris. Université de Paris 1 Panthéon-Sorbonne. Archéologie du Proche-PrientGoogle Scholar
  35. Dickel DN, Doran GH (1989) Severe neural tube defect syndrome from the early archaic of Florida. Am J Phys Anthrop 80(3):325–334CrossRefGoogle Scholar
  36. Djurić M, Janović A, Milanović P, Djukić K, Milenković P, Drašković RM (2010) Adolescent health in medieval Serbia: signs of infectious diseases and risk of trauma. Homo –J Comp Human Biol 61:130–149CrossRefGoogle Scholar
  37. Douglas K (1993) The great folic acid scandal. New Sci 139(1882):24–25Google Scholar
  38. Dweivedi AK, Bhatnagar R (2016) Anthropometric study of angle of femoral torsion in Maharashtrian population. Medical Journal of Dr. D.Y. Patil University 9(2):200–203CrossRefGoogle Scholar
  39. Ehlers K, Elmazar MMA, Nau H (1996) Methionine reduces the valproic acid-induced spina bifida rate in mice without altering valproic acid kinetics. J Nutr 126:67–75Google Scholar
  40. Estebaranz F, Anfruns J (2006) Informe sobre el material antropológico del yacimiento neolítico de Dja’de, Siria. Archaeological Report (not published)Google Scholar
  41. Estebaranz F, Martinez LM, Anfruns J, Pérez-Pérez A (2007) Short fieldwork report: tell Halula (Syria), seasons 1992-2005. Bioarchaeology of the Near East 1:65–67Google Scholar
  42. Ferembach D (1963) Frequeny of spina bifida occulta in prehistoric human skeletons. Nature 199:100–101CrossRefGoogle Scholar
  43. Fidas A, MacDonald HL, Elton RA, McInnes A, Wild SR, Chrisholm GD (1989) Prevalence of spina bifida occulta in patients with functional disorders of the lower urinary tract and its relation to urodynamic and neurophysiological measurements. BMJ 298:357–359CrossRefGoogle Scholar
  44. Gelineau-van Waes J, Finnel RH (2001) Gentics of neural tube defects. Sem Pediat Neurol 8(3):160–164CrossRefGoogle Scholar
  45. Gordon N (1995) Folate metabolism and neural tube. Brain Dev 17:307–311CrossRefGoogle Scholar
  46. Graham HK, Parsch K (2009) Neural tube defects, spina bifida, and spinal dysraphism. In: Benson M, Fixsen J, Macnicol M, Parsch K (eds) Children’s orthopaedics and fractures. Springer, London, pp 265–286Google Scholar
  47. Groza VM, Simalcsik A, Bejenaru L (2013) Spina bífida occulta in Medieval and Post-Medieval skeletons from Iasi city, in north-east Romania. Analele Științifice ale Universității “Alexandru Ioan Cuza” din Iași, s. Biologie animală LIX:101–113Google Scholar
  48. Guez S, Chiarelli G, Menni F, Salera S, Principi N, Esposito S (2012) Severe vitamin B12 deficiency in an exclusivelybreastfed 5-month-old Italian infant born to amother receiving multivitamin supplementationduring pregnancy. BMC Pediatr 12:85–90CrossRefGoogle Scholar
  49. Guidotti TL (1978) American Indian anthropology and medicine. J Am Med Assoc 240:348CrossRefGoogle Scholar
  50. Hall JG (1986) Neural tube defects, sex ratios, and X inactivation. Lancet 6(2):1334–1335CrossRefGoogle Scholar
  51. Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128:69–72CrossRefGoogle Scholar
  52. Hartel M, Petersik A, Schmidt A, Kendoff D, Nüchtern J, Rueger JM, Lehmann W, Grossterlinden LG (2016) Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets. PLoS One. doi:10.1371/journal.pone.0149480 Google Scholar
  53. Henneberg RJ, Henneberg M (1999) Variation in the closure of the sacral canal in the skeletal sample from Pompeii, Italy, 79 AD. Perspect Human Biol 4(1):177–188Google Scholar
  54. Herrerín J, Baxarias J, Garcia-Guixé E, Núñez M, Dinarés R (2010) Betatalasemia en un niño de una necrópolis del Imperio Nuevo (Luxor, Egipto). Estudio macroscópico y radiológico. Imagen Diagn 1(2):61–66CrossRefGoogle Scholar
  55. Herrmann W, Schorr H, Obeid R, Geisel J (2003) Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr 78:131–136Google Scholar
  56. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the Ocurrence of neural tube defects. JAMA 285:2981–2986CrossRefGoogle Scholar
  57. Józca L, Pap I, Fóthi E (1992) The occurrence of spina bifida occulta in medieval and contemporaneous Hungarian populations. Anthropologia Hungarica XXIL:57–60Google Scholar
  58. Kajbafzadeh A, Espandar L, Mehdizadeh M, Tajik P, Mohseni P (2004) Spina bifida occulta in persistent primary nocturnal enuresis. Iran J Radiol December:65–67Google Scholar
  59. Kendrew Quadrangle Excavations (2008) Phase 3- Mass Burial Pathology. January–AugustGoogle Scholar
  60. Kenyon K (1957) Digging up Jericho. Benn, LondonGoogle Scholar
  61. Keshavarzi B, Moore F, Mosaferi M, Rahmani F (2011) The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Expo Health 3:135–147CrossRefGoogle Scholar
  62. Kibar Z, Capra V, Gros P (2007) Towards understanding the genetic basis of neural tube defects. Clin Genet 71:295–310CrossRefGoogle Scholar
  63. Kingsley PC, Olmsted KL (1948) A study to determine the angle of anteversion of the neck of the femur. J Bone Joint Surg Am 30A:745–751CrossRefGoogle Scholar
  64. Kozma C (2008) Skeletal dysplasia in ancient Egypt. Am J Med Genet A 146A:3104–3112CrossRefGoogle Scholar
  65. Kubavat DM, Nagar SK, Varlekar P, Uttekar K, Kumar SV, Lakhani C (2013) A study of Total spina bifida of the sacrum in western India. Int J Rec Trends Sci Tech 7(1):10–13Google Scholar
  66. Kumar A, Tubbs RS (2011) Spina bifida: a diagnostic dilemma in paleopathology. Clin Anat 14:19–33CrossRefGoogle Scholar
  67. Kumar P, Aneja S, Kumar R, Taluja V (2005) Spina bifida occulta in functional enuresis. Indian J Pediatrics 72:223–225CrossRefGoogle Scholar
  68. Kuttner RE (1978) Prehistoric Spina Bifida Occulta. JAMA 240:24CrossRefGoogle Scholar
  69. Lassmann J, Garibay Gonzalez F, Melchionni JB, Pasquariello PS, Snyder HM III (2007) Sexual function in adult patients with spina bifida and its impact on quality of life. J Urol 178:1611–1614CrossRefGoogle Scholar
  70. Laurence KM, James N, Miller M, Campbell H (1980) Increased risk of recurrence of pregnancy complicated by fetal neural tube defects in mothers receiving poor diets, and possible benefit of dietary counseling. Br Med J 281:1592–1594CrossRefGoogle Scholar
  71. Laurence KM, James N, Miller M, Tennent GB, Campbell H (1981) Double-blind randomized controlled trials of folate treatment before conception to prevent recurrence of neural tube defects. Br Med J 282:1509–1511CrossRefGoogle Scholar
  72. Le Mort F (2007) Développements récents dans l’étude des premières populations néolithiques du Proche-Orient. Bulletin du Centre de recherche français à Jerusalem 18:20–35Google Scholar
  73. Lin HM, Lee KX, Yeh MC, Chen CC, Lai HC, Liao MT, Chen SF (2014) The pathology and dental morphology of Neolithic burials from the Wu-Shan-Tou site, southwestern Taiwan. J Archaeol Anthrop 80:251–282Google Scholar
  74. Lindhout D, Meinardi H (1984) Spina bífida and in utero exposure to valproate. Lancet II:396CrossRefGoogle Scholar
  75. Maat GJR, Lonnee HA, Noordhuizen HJW (1990) Analysis of human skeletons from the Hellenistic period, buriedat a ruined Bronz.e age building on Failaka, Kuwait. In: Failaka, fouilles françaises 1986–1988. Sous la direction de YvesCalvet et Jeacqueline Gachet. Lyon: Maison de l’Orient et de la Méditerranée Jean Pouilloux pp. 85–102Google Scholar
  76. Maddin R, Stech T, Muhly JD (1991) Çayönü Tepesi. The earliest archaeological metal artifacts. In: Mohen JP, Eluère C (eds) Découverte du Métal. Mediterranée oriental et Proche-Orient, Paris, pp 375–386Google Scholar
  77. Makarewicz C, Tuross N (2012) Finding fodder and tracking transhumance: isotopic detection of goat domestication Processess in the near east. Curr Anthrop 53(4):495–505CrossRefGoogle Scholar
  78. Marani E, Koch WFRM (2014) The pelvis: Structre, gender and society. Springer-Verlag, DordrechtCrossRefGoogle Scholar
  79. Markowska A (2007) Anthropological analysis of human skeletal remains from a modern cemetery in Wyszyński street in Wrocław, Poland. EAA Summer School eBook 1:65–81Google Scholar
  80. Martini F, Ober WC (2001) Fundamentals of anatomy and physiology: prentice hall. Englewood Cliffs, New JerseyGoogle Scholar
  81. Masson M (2014) The Osteological Evidence of Neolithic Populations from the Southern Great Plain of Hungary: An Insight into the Potential of Macroscopic Observations for the Demographic and Pathological Analyses of Past Populations. Dissertation, University of SzegedGoogle Scholar
  82. Miyazato M, Sugaya K, Nishijima S, Owan T, Ogawa Y (2007) Location of spina bifida occulta and ultrasonographic bladder abnormalities predict the outcome of treatment for primary nocturnal enuresis in children. Int J Urol 14:33–38CrossRefGoogle Scholar
  83. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364:1885–1895CrossRefGoogle Scholar
  84. Molist M, Montero-Ruiz I, Clops X, Rovira E, Guerrero E, Anfruns J (2010) New metallurgic findings from the pre-pottery Neolithic: tell Halula (Euphrates Valley, Syria). Paléorient 35:33–48CrossRefGoogle Scholar
  85. Molloy AM (2005) The role of folic acid in the prevention of neural tube defects. Trends Food Sci Technol 16:241–245CrossRefGoogle Scholar
  86. Mrudula C, Naveena S (2013) Morphometry of sacral hiatus and its clinical relevance. Int J Adv Res 1(7):12–18Google Scholar
  87. Naderi S, Rezaei HR, Pompanon F, Blum MGB, Negrini R, Naghash HR, Balkiz Ö, Mashkour M, Gaggiotti OE, Ajmone-Marsoan P, Vigne JF, Taberlet P (2008) The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. PNAS 105(46):17659–17664CrossRefGoogle Scholar
  88. Nagar SK (2004) A study of sacral hiatus in dry human sacra. J Anat Soc India 54(2):18–21Google Scholar
  89. Nagar Y (2011) Human osteological database at the Israel antiquities authority. Overview and some examples of use. Bioarchaeology of the Near East 5:1–18Google Scholar
  90. Northrup H, Volcik KA (2000) Spina Biffida and other neural tube defects. Curr Probl Pediatr 30(10):317–322Google Scholar
  91. Ortner DJ (2003) Identification of Pathological Conditions in Human Skeletal Remains. 2nd Edition. Academic Press, San Diego (USA) Page 469Google Scholar
  92. Ostendorf Smith M (2012) Paleopathology. In: DiGangi EA, Moore MK (eds) Research methods in human skeletal biology. Academic Press, OxfordGoogle Scholar
  93. Pales L (1930) Paléopathologie et pathologie comparative. Masson Ed, ParisGoogle Scholar
  94. Palmer JS, Kaplan WE, Firlit CF (1999) Erectile dysfunction in spina bifida is treatable. Lancet 354:125–126CrossRefGoogle Scholar
  95. Palmer JS, Kaplan WE, Firlit CF (2000) Erectile dysfunction in patients with spina bifida is a treatable condition. J of Urol 164:958–961CrossRefGoogle Scholar
  96. Park CH, Stewart W, Khoury MJ, Mulinare J (1992) Is there etiologic heterogeneity between upper and lower neural tube defects. Am J Epidemiol 136:1493–1501Google Scholar
  97. Parsons FG (1914) The characters of the English thigh-bone. J Anat Physiol XLVIII:238–267Google Scholar
  98. Payne J, Shibasaki F, Mercola M (1997) Spina bifida occulta in homozygous Patch mouse embryos. Dev Dyn 209:105–116CrossRefGoogle Scholar
  99. Pollard AM, Ditchfield P, Piva E, Wallis S, Falys C, Ford S (2012) Sprounting like cockle amongst the wheat: the St. Brice’s day massacre and the isotopic analysis of human bones from St. John’s college, Oxford. Oxford J Arch 31(1):83–102CrossRefGoogle Scholar
  100. Rachmel A, Steinberg T, Ashkenazi S, Sela BA (2003) Cobalamin deficiency in a breast-fed infant of a vegetarian mother. IMAJ 5:534–536Google Scholar
  101. Reikerås O, Bjerkreim I, Kolbenstvedt A (1983) Anteversion of the acetabulum and femoral neck in Normals and in patients with osteoarthritis of the hip. Acta Orthopaedica Scan 54(1):18–23CrossRefGoogle Scholar
  102. Rife JL (2012) Isthmia. Excavations by the University of California at Los Angeles and the Ohio State University under the auspices of the American School of Classical Studies at Athens. Volume IX. The Roman and Byzantine graves and human remains. The American School of Classical Studies at Athens Princeton, New JerseyGoogle Scholar
  103. Roberts C, Manchester K (2005) The archaeology of disease. Cornell University Press, IthacaGoogle Scholar
  104. Ronis MJ, Aronson J, Gao GG, Hogue W, Skinner RA, Badger TM, Lumpkin CK Jr (2001) Skeletal effects of developmental lead exposure in rats. Toxicol Sci 62:321–329CrossRefGoogle Scholar
  105. Sairyo K, Goel VK, Vadapalli S, Vishnubhotla SL, Biyani A, Ebraheim N, Terai T, Sakai T (2006) Biomechanical comparison of lumbar spine with or without spina bifida occulta. A finite element analysis. Spinal Cord 44:440–444Google Scholar
  106. Sakakibara R, Hattori T, Uchiyama T, Kamura K, Yamanishi T (2003) Uroneurological assessment of spina bifida cystica and occulta. Neurourol Urodyn 22:328–334CrossRefGoogle Scholar
  107. Saluja PG (1988) The incidence of spina bifida occulta in a historic and modern London population. J Anat 158:91–93Google Scholar
  108. Savona-Ventura C (2007) Congenital malformations: a historical perspective in a Mediterranean community. Malta Med J 19(1):52–55Google Scholar
  109. Seaver LH, Stevenson RE (2006) Syndromes with neural tube defects. In: Wyszynski DF (ed) Neural tube defects: from origin to treatment. Oxford University Press, Oxford, pp 76–83Google Scholar
  110. Seema SM, Mahajan A (2013) An Anatomical Study of Variations of Sacral Hiatus in Sacra of North Indian Origin and Its Clinical Significance. Estudio Anatómico de las Variaciones del Hiato Sacro en Sacros del Norte de la India y su Significancia Clínica. Int J Morphol 31(1):110–114CrossRefGoogle Scholar
  111. Senoglu N, Senolgu M, Oksuz H, Gumusalan Y, Yuksel KZ, Zencirci B, Ezberci M, Kizilkanat E (2005) Landmarks of the sacral hiatus for caudal epidural block:an anatomical study. British J of Anaesthesia 95(5):692–695CrossRefGoogle Scholar
  112. Shin SH, Im YJ, Lee MJ, Lee YS, Choi EK, Han SW (2013) Spina bifida occulta: not to be overlooked in children with nocturnal enuresis. Int J Urol 20:831–835CrossRefGoogle Scholar
  113. Silva-Pinto V, Arriaza B, Standen V (2010) Evaluación de la frecuencia de espina bífida oculta y su posible relación con el arsénico ambiental en una muestra prehispánica de la Quebrada de Camarones, norte de Chile. Rev Med Chile 138:461–469CrossRefGoogle Scholar
  114. Simalcsik A, Miu G, Groza VM, SImalcsik RD (2011) Regarding occult Spinal Dysreaphism (Spina Bifida Ocuulta), focusing especially on a Medieval population from Iaşi. Analele Științifice ale Universității “Al. I. Cuza” Iași, s. Biologie animală LVII:131–140Google Scholar
  115. Simsek C (2013) Assessment of naturally ocurring arsenic contamination in the groundwater of Sarkisla plain (Sivas/Turkey). Environ Earth Sci 68:691–702CrossRefGoogle Scholar
  116. Singh R (2013) Classification, causes and clinical implications of sacral spina bifida occulta in Indians. Basic Sciences of Medicine 2(1):14–20Google Scholar
  117. Smrcka V, Horn V, Salas M, Loosova J (1989) Porous hyperostosis and signs of cannibalism at the Blucina locality in southern Moravia (Czechoslovakia) in the early bronze age. PaleoBios 5(1):5–15Google Scholar
  118. Spacca B, Buxton N (2008) Spina bifida occulta and monozygotic twins. J Neurosurg Pediatrics 2:258–260CrossRefGoogle Scholar
  119. Swift J, Cupper ML, Creig A, Westaway MC, Carter C, Santoro CM, Wood R, Jacobsen GE, Bertuch F (2015) Skeletal arsenic of the pre-Columbian population of Caleta Vitor, northern Chile. J Archaeol Sci 58:31–45CrossRefGoogle Scholar
  120. Taskaynatan MA, Izci Y, Ozgul A, Hazneci B, Dursun H, Kalyon TA (2005) Clinical significance of congenital lumbosacral malformations in young male population with prolonged low back pain. Spine 30(8):210–213CrossRefGoogle Scholar
  121. Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis, and carcinogenesis –a health risk assessment and management approach. Mol Cell Biochem 255:47–55CrossRefGoogle Scholar
  122. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure –a critical review. Toxicol Pathol 31:575–588Google Scholar
  123. Toogood PA, Skalak A, Cooperman DR (2009) Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 467:876–885CrossRefGoogle Scholar
  124. Van der Put NMJ, Trijbels FJM, van den Heuvel LP, Blom HJ, Steegers-Theunissen RPM, Eskes TKAB, Mariman ECM, den Heyer M, Frosst P, Rozen R (1995) Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346(8982):1070–1071CrossRefGoogle Scholar
  125. Van Winckel M, Vande Velde S, De Bruyne R, Van Biervliet S (2011) Clinical practice: vegetarian infant and child nutrition. Eur J Pediatr 170:1489–1494CrossRefGoogle Scholar
  126. Verhoef M, Barf HA, Post MWM, van Asbeck FWA, Gooskens RHJM, Prevo AJH (2004) Secondary impairments in young adults with spina bífida. Developmental Medicine & Child Neurology 46:420–427CrossRefGoogle Scholar
  127. Verhoef M, Post MWM, Barf HA, van Asbeck FWA, Gooskens RHJM, Prevo AJH (2007) Perceived health in young adults with spina bífida. Developmental Medicine & Child Neurology 49:192–197CrossRefGoogle Scholar
  128. Vigne JD (2008) Zooarchaeological Aspects of the Neolithic Diet Transition in the Near East and Europe, and Their Putative Relationships with the Neolithic Demographic Transition. In: Bocquet-Appel JP, Bar-Yosef O (ed) The Neolithic Demographic Transition and its Consequences, Springer Science & Business Media, pp 179–205.Google Scholar
  129. Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA (2009) The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis. Am J Phys Anthrop 139:109–125CrossRefGoogle Scholar
  130. Watkins ML, Scanlon KS, Mulinare J, Khoury MJ (1996) Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology 7(5):507–512CrossRefGoogle Scholar
  131. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1011–1023CrossRefGoogle Scholar
  132. Weiss R, Fogelman Y, Bennet M (2004) Severe vitamin B12 deficiency in an infant associated with a maternal deficiency and a strict vegetarian diet. J Pedriatic Hematology/Oncology 26(4):270–271CrossRefGoogle Scholar
  133. Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metabol 67(4):317–323CrossRefGoogle Scholar
  134. Williams LJ, Mai CT, Edmonds LD, Shaw GM, Kirby RS, Hobbs CA, Sever LE, Miller LA, Meankey FJ, Levitt M (2002) Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66:33–39CrossRefGoogle Scholar
  135. Werler MM, Shapiro S, Mitchell AA (1993) Periconceptional folic acid exposure and risk of occurrent neural tube defects. J Am Med Assoc 269:1257–1261CrossRefGoogle Scholar
  136. Yalçin Ü, Pernicka E. (1995) Frühneolithische Kupfermetallurgie von Aşikli Höyük n.d. In: Hauptmann A, Pernicka A, Rehren T & Yalçin (ed) The Beginnings of Metallurgy. Proceedings of the International Conference “The Beginnings of Metallurgy”, Bochum pp 45–55Google Scholar
  137. Zeder MA, Hesse B (2000) The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 Years ago. Science 287:2254–2257CrossRefGoogle Scholar
  138. Zemerline A, Vincent JP, Sid-Ahmed S, Le Nen D, Dubrana F (2012) Lumbo-sacral malformations and spina bifida occulta in medieval skeletons from Brittany. Eur J Orthop Surg Traumatol. doi:10.1007/s00590-012-0967-2 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • F. Estebaranz-Sánchez
    • 1
  • L. M. Martínez
    • 1
  • M. Alrousan
    • 2
  • Bérénice Chamel
    • 3
  • M. Molist
    • 4
  • E. Coqueugniot
    • 3
  • A. Pérez-Pérez
    • 1
  1. 1.Sec. Zoologia i Antropologia, Dept. de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Anthropology, Faculty of Archaeology and AnthropologyYarmouk UniversityIrbidJordan
  3. 3.UMR Archéorient, Maison de l’Orient et de la MéditerranéeLyonFrance
  4. 4.Seminari d’Arqueologia Prehistòrica del Pròxim Orient (SAPPO)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations