Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 6, pp 1359–1373 | Cite as

X-ray and neutron-based non-invasive analysis of prehistoric stone artefacts: a contribution to understand mobility and interaction networks

  • M. I. Dias
  • Z. S. Kasztovszky
  • M. I. Prudêncio
  • A. C. Valera
  • B. Maróti
  • I. Harsányi
  • I. Kovács
  • Z. Szokefalvi-Nagy
Original Paper
  • 193 Downloads

Abstract

Carbonate-rich archaeological artefacts are difficult to identify and correlate between them and with raw materials of such heterogeneous geological sources, especially when only non-invasive analysis is possible. A novel combination of X-ray and neutron-based non-invasive analysis is implemented and used for the first time to study prehistoric stone idols and vessels, contributing to culture identity, mobility and interaction in the recent Prehistory of Southern Iberia. Elemental composition was obtained by prompt gamma activation analysis (PGAA) and external beam particle-induced x-ray emission (PIXE); homogeneity of the stone artefacts and the presence/absence of internal fractures were obtained by neutron radiography (NR). These atomic and nuclear techniques, simultaneously used for complementary chemical information, have been demonstrated to be of great value as they provide non-destructive compositional information avoiding sample preparation, crucial in so singular and rare objects. The obtained results, especially of PGAA, are very promising and useful in general assessments of provenance. The stone artefacts show signs of both nearby and long-distance procurement, as well as of unknown attribution.

Keywords

PGAA PIXE Neutron radiography Stone artefacts Prehistoric networks Provenance 

Notes

Acknowledgements

C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project. Special thanks also to the CHARISMA project cofunded by the European Commission within the action ”Research Infrastructures” of the “Capacities”, at Budapest Neutron Center, GA No. FP7-228330.

References

  1. Allmäe R, Limbo-Simovart JU, Heapost L, Verš E (2012) The content of chemical elements in archaeological human bones as a source of nutrition research. Pap Anthropol XXI:27–49CrossRefGoogle Scholar
  2. Anderson IS, McGreevy RL, Bilheux HZ (2009) Neutron imaging and applications. Springer Verlag, NewYorkGoogle Scholar
  3. Attanasio D, Boschi C, Bracci S, Cantisani E, Paolucci F (2015) Provenance studies of the marble of ancient sculptures in the tribune of the Uffizi gallery, Florence. Archaeometry 57(S1):74–89CrossRefGoogle Scholar
  4. Banner JL (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42:805–824CrossRefGoogle Scholar
  5. Beltrán J, Loza Azuaga ML, Ontiveros Ortega E, Rodríguez Gutiérrez O, Taylor R (2012) The quarrying and use of Marmora in Baetica. An Archaeometry-based Research Project. Italica 1:220–229Google Scholar
  6. Cabral JMP, Vieira MCR, Carreira PM, Figueiredo MO, Pena TPA, Tavares A (1992) Preliminary study on the isotopic and chemical characterization of marbles from Alto Alentejo (Portugal). In: Waelkens M, Herz N, Moens L (eds). Ancient stones: quarrying, trade and provenance: interdisciplinary studies on stones and stone technology in Europe and Near East from the Prehistoric to the Early Christian Period, vol 4. Leuven University Press, Acta Archaeologica Lovaniensia Monographiae, Leuven, pp 191–198Google Scholar
  7. Campbell JL, Hopman TL, Maxwell JA, Nejedly Z (2000) The Guelph PIXE software package III: alternative proton database. Nucl Instr Meth B 170:193–204CrossRefGoogle Scholar
  8. Crandell O (2012) Evaluation of PGAA data for provenance of lithic artifacts, Studia UBB. Geologia 57(1):3–11CrossRefGoogle Scholar
  9. Dias MI, Prudêncio MI, Valera AC, Lago M, Gouveia MA (2005) Composition, technology and functional features of Chalcolhitic pottery from Perdigões, Reguengos de Monsaraz (Portugal), a preliminary report. Geoarchaeological and Bioarchaeological Studies, Amsterdam, Netherlands 3:161–164Google Scholar
  10. Domínguez Bella S (2009) Huellas de cantería romana de mármol en Almadén de la Plata (Sevilla), un patrimonio a conservar Nogales T, Beltrán J. (coords.), Marmora Hispana: Explotación y uso de los materiales pétreos en la Hispania Romana, Roma, 377–390Google Scholar
  11. Ehinola OA, Ejeh OI, Oderinde OJ (2016) Geochemical Characterization of the Paleocene Ewekoro Limestone Formation, SW Nigeria: Implications for Provenance, Diagenesis and Depositional Environment. Geo-materials 6:61–77. doi: 10.4236/gm.2016.63006
  12. Fazekas B, Molnár G, Belgya T, Dabolczi L, Simonits A (1997) Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra. J Radioanal Nucl Chem 215:271–277CrossRefGoogle Scholar
  13. Goldschmidth JR, Graff L, Joensu OI (1955) The occurrence of magnesium calcite in nature. Geochim Cosmochim Acta 1:212–230CrossRefGoogle Scholar
  14. Gyódi I, Demeter I, Hollós-Nagy IK, Kovács I, Szőkefalvi-Nagy Z (1999) External-beam PIXE analysis of small sculptures. Nucl Instr Meth B 150:605–610CrossRefGoogle Scholar
  15. Hurtado V. (2008) Ídolos, estilos y territorios de los primeros campesinos en el sur peninsular. In: C. Cacho Quesada, R. Maicas Ramos, J. A. Martos y Mª I. Martínez (coord.). Acercándonos al pasado. Prehistoria en 4 actos. Ministerio de Cultura. Museos Estatales. Museo Arqueológico Nacional y CSIC. Edición en CD y web del MAN. http://man.mcu.es/museo/JornadasSeminarios/acercandonos_al_pasado.html
  16. Hurtado V (2010) “Representaciones simbólicas, sitios, contextos e identidades territoriales en el Suroeste Peninsular”, Ojos que nunca se cierran: Ídolos en las primeras sociedades campesinas: 16 de Deciembre de 2009. Museo Arqueológico Nacional, Madrid, pp 137–198Google Scholar
  17. Kasztovszky Z, Biró KT, Markó A, Dobosi V (2008) Archaeometry, cold neutron prompt gamma activation analysis—a non-destructive method for characterization of high silica content chipped stone tools and raw materials. Archaeometry 50(1):12–29Google Scholar
  18. Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based non-destructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instr Meth A 779:116–123CrossRefGoogle Scholar
  19. Koralay T, Kilinçarslan S (2015) Minero-petrographic and isotopic characterization of two antique marble quarries in the Deni̇zli̇ region (western Anatolia, Turkey). Periodico di Mineralogia 84(2):263–288Google Scholar
  20. Lapuente P (1995) Mineralogical, petrographical and geochemical characterization of white marbles from Hispania, Y. Maniatis, N. Herz and Y. Basiakos (coords.), The Study of Marble and Other Stones Used in Antiquity, London, pp 151–160Google Scholar
  21. Lapuente P, Turi B (1995) Marbles from Portugal: petrographic and isotopic characterization. Sci Technol Cult Herit 4(2):33–42Google Scholar
  22. Mañas Romero I (2012) Marmora de las canteras de Estremoz, Alconera y Sintra: su uso y difusión, Ed. V. García-Entero. El marmor en Hispania: explotación, uso y difusión en época romana, UNED, Madrid, pp 331–346 Google Scholar
  23. Martins R, Lopes L (2011) Mármores de Portugal. Rochas & Equipamentos 100:32–56Google Scholar
  24. Morbidelli P, Tucci P, Imperatori C, Polvorinos A, Preite Martinez M, Azzaro E, Hernandez MJ (2007) Roman quarries of the Iberian peninsula: ‘Anasol’ and ‘Anasol’- type. Eur J Mineral 19(1):125–135CrossRefGoogle Scholar
  25. Odriozola CP, Hurtado V, Dias MI, Valera AC (2008) Produção e consumo de campaniformes no vale do Guadiana: uma perspectiva ibérica. Eds. NIA-Era Arqueologia. Apontamentos de Arqueologia e Património 3:45–52Google Scholar
  26. Onimisi M, Obaje NG, Daniel A (2013) Geochemical and petrogenetic characteristics of the marble deposit in Itobe area, Kogi state, Central Nigeria. Adv Appl Sci Res 4(5):44–57Google Scholar
  27. Origlia F, Gliozzo E, Meccheri M, Spangenberg JE, Turbanti Memmi I, Papi E (2011) Mineralogical, petrographic and geochemical characterisation of white and coloured Iberian marbles in the context of the provenancing of some artefacts from Thamusida (Kenitra, Morocco). Eur J Mineral 23:857–869CrossRefGoogle Scholar
  28. Polvorinos del Río A, Arnedo MJH, Hurtado Pérez V, López JÁ, González MF, Gómez R (2010) Variabilidad espectral VIS-SWIR de objetos líticos de carácter cultual en el yacimiento calcolítico de la Pijotilla. Actas - VIII Congreso Ibérico de Arqueometria. Eds. Carrasco ME, Romero RL, Dias-Tendero MA, Garcia, JC. Teruel, Spain, pp 379–386Google Scholar
  29. Prudêncio MI, Roldán C, Dias MI, Marques R, Eixea A, Villaverde V (2016) A micro-invasive approach using INAA for new insights into Palaeolithic flint archaeological artefacts. J Radioanal Nucl Chem 308:195–203. doi: 10.1007/s10967-015-4294-z CrossRefGoogle Scholar
  30. Rehren T, Belgya T, Jambon A, Káli G, Kasztovszky Z, Kis Z, Kovács I, Maróti B, Martinón-Torres M, Miniaci G, Pigott VC, Radivojević M, Rosta L, Szentmiklósi L, Szökefalvi-Nagy Z (2013) 5,000 years old Egyptian iron beads made from hammered meteoritic iron. J Archaeol Sci 40:4785–4792CrossRefGoogle Scholar
  31. Révay Z (2009) Determining elemental compositions using prompt γ activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  32. Révay Z, Belgya T (2004) Principles of PGAA method. In: Molnár GL (ed) Handbook of prompt gamma activation, analysis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 1–30Google Scholar
  33. Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. In: Molnár GL (ed) Handb. Prompt gamma act. Anal. Neutron beams. Springer US, Boston, pp 173–364CrossRefGoogle Scholar
  34. Révay Z, Belgya T, Molnár GL (2005) Application of Hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265CrossRefGoogle Scholar
  35. Rosen O, Desmons J, Fettes D (2007) Metacarbonate and related rocks. Provisional recommendations by the IUGS sub-commission on the systematics of metamorphic rocks. Web Version of 1.07. https://www.bgs.ac.uk/scmr/docs/papers/paper_7.pdf.Accessed 02 May 2016
  36. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Method 9:676CrossRefGoogle Scholar
  37. Szentmiklósi L, Belgya T, Révay Z, Kis Z (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor. J Radioanal Nucl Chem 286:501–505CrossRefGoogle Scholar
  38. Taelman D (2014) Contribution to the use of marble in central-Lusitania in roman times: the stone architectural decoration of Ammaia (São Salvador da Aramenha, Portugal). Archivo Español de Arqueologia:175–194Google Scholar
  39. Taelman D, Elburg M, Smet I, De Paepe P, Luís L, Vanhaecke F, Vermeulen F (2013) Roman marble from Lusitania: petrographical and geochemical characterisation. J Archaeol Sci 5:2227–2236CrossRefGoogle Scholar
  40. Taylor ST, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc Lond A 301:381–399CrossRefGoogle Scholar
  41. Todd TW (1966) Petrographic classification of carbonate rocks. J Sediment Petrol 36(2):317–340Google Scholar
  42. Ulens K, Moens L, Dams R (1994) Study of element distributions in weathered marble crusts using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 9:1243–1248CrossRefGoogle Scholar
  43. Valera AC (2012a) Ditches, pits and hypogea: new data and new problems in South Portugal Late Neolithic and Chalcolithic funerary practices. In: Gibaja JF, Carvalho AF, Chambom P (eds) Funerary Practices from The Mesolithic to The Chalcolithic of the Northwest Mediterranean, vol 2417. BAR International Series, Oxford, pp 103–122 Google Scholar
  44. Valera AC (2012b) Mind the gap: Neolithic and Chalcolithic enclosures of South Portugal. In: Gibson A (ed) Enclosing the Neolithic. Recent studies in Britain and Europe, vol 2440. BAR International Series, Oxford, pp 165–183Google Scholar
  45. Valera AC (2015) The diversity of ideotechnic objects at Perdigões enclosure: a first inventory of items and problems. Arpi 3:238–256Google Scholar
  46. Valera AC, Silva AM, Márquez Romero JEM (2014a) The temporality of Perdigões enclosures: absolute chronology of the structures and social practices. SPAL 23:11–26CrossRefGoogle Scholar
  47. Valera AC, Silva AM, Cunha C, Evangelista LS (2014b) Funerary practices and body manipulations at Neolithic and chalcolithic Perdigões ditched enclosures (South Portugal). In: Valera AC (ed) Recent prehistoric enclosures and funerary practices, vol 2676. BAR International Series, Oxford, pp 37–57Google Scholar
  48. Wavemetric Inc., IGORPro (2013) 10200 SW Nimbus, G-7 Portland, OR97223 USA, http://www.wavemetrics.com/products/igorpro/

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. I. Dias
    • 1
  • Z. S. Kasztovszky
    • 2
  • M. I. Prudêncio
    • 1
  • A. C. Valera
    • 3
  • B. Maróti
    • 2
  • I. Harsányi
    • 2
  • I. Kovács
    • 4
  • Z. Szokefalvi-Nagy
    • 4
  1. 1.Centro de Ciências e Tecnologias Nucleares—C2TN. Campus Tecnológico e Nuclear. Instituto Superior TécnicoPolo de LouresLouresPortugal
  2. 2.Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Era Arqueologia, Núcleo de Investigação Arqueológica—NIA. Cç. de Santa Catarina, 9C, 1495-705 Cruz Quebrada—Dafundo—Portugal. Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArHEBUniversidade do AlgarveFaroPortugal
  4. 4.Institute for Particle and Nuclear Physics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations