Archaeological and Anthropological Sciences

, Volume 10, Issue 5, pp 1153–1164 | Cite as

Population and forest dynamics during the Central European Eneolithic (4500–2000 BC)

  • Jan KolářEmail author
  • Petr Kuneš
  • Péter Szabó
  • Mária Hajnalová
  • Helena Svitavská Svobodová
  • Martin Macek
  • Peter Tkáč
Original Paper


The population boom-and-bust during the European Neolithic (7000–2000 BC) has been the subject of lively discussion for the past decade. Most of the research on this topic was carried out with help of summed radiocarbon probability distributions. We aim to reconstruct population dynamics within the catchment of a medium sized lake on the basis of information on the presence of all known past human activities. We calculated a human activity model based on Monte Carlo simulations. The model showed the lowest level of human activity between 4000 and 3000 BC. For a better understanding of long-term socio-environmental dynamics, we also used the results of a pollen-based quantitative vegetation model, as well as a local macrophysical climate model. The beginning of the decline of archaeologically visible human activities corresponds with climatic changes and an increase in secondary forest taxa probably indicating more extensive land use. In addition, social and technological innovations are important, such as the introduction of the ard, wheel, animal traction and metallurgy, as well as changes in social hierarchy characterizing the same period.


Population dynamics Neolithic Eneolithic Secondary woodland REVEALS Macrophysical climate model 



The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 278065. This study was supported by Slovak Research and Development Agency under the contract number APVV-0598-10 and as a long-term research development project no. RVO 67985939.


  1. Allentoft ME, Sikora M, Sjögren KG, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlström T, Vinner L, Malaspinas AS, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Casa PD, Dąbrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolář J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Pálfi G, Pokutta D, Pospieszny Ł, Price TD, Saag L, Sablin M, Shishlina N, Smrčka V, Soenov VI, Szeverényi V, Tóth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Pontén T, Brunak S, Nielsen R, Kristiansen K, Willerslev E (2015) Population genomics of Bronze Age Eurasia. Nature 522:167–172. doi: 10.1038/nature14507
  2. Bakker JA, Kruk J, Lanting AE, Milisauskas S (1999) The earliest evidence of wheeled vehicles in Europe and the near east. Antiquity 73:778–790CrossRefGoogle Scholar
  3. Barta, P, Demján, P, Hladíková, K, Kmeťová, P, Piatničková, K (2013) Database of radiocarbon dates measured on archaeological samples from Slovakia, Czechia, and adjacent regions. Archaeological Chronometry in Slovakia, Slovak Research and Development Agency Project No. APVV-0598-10, 2011–2014, Dept. of Archaeology, Faculty of Arts, Comenius University in Bratislava. Accessed 15 March 2015
  4. Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  5. Bishop RR (2015a) Did late Neolithic farming fail or flourish? A Scottish perspective on the evidence for late Neolithic arable cultivation in the British isles. World Archaeol 47:834–855. doi: 10.1080/00438243.2015.1072477 CrossRefGoogle Scholar
  6. Bishop RR (2015b) Summed radiocarbon probability distributions from cereal grains: arable cultivation proxy or the “archaeology of us”? (a reply to Stevens and fuller 2015). World Archaeol 47:876–881. doi: 10.1080/00438243.2015.1093427 CrossRefGoogle Scholar
  7. Bocquet-Appel JP (2002) Paleoanthropological traces of a Neolithic demographic transition. Curr Anthropol 43:637–650CrossRefGoogle Scholar
  8. Bogaard A (2004) Neolithic farming in Central Europe: an archaeobotanical study of crop husbandry practices. Taylor & Francis, AbingdonGoogle Scholar
  9. Bogaard A (2005) ‘Garden agriculture’ and the nature of early farming in Europe and the near east. World Archaeol 37:177–196. doi: 10.1080/00438240500094572
  10. Bollongino R, Nehlich O, Richards MP, Orschiedt J, Thomas MG, Sell C, Fajkosova Z, Powell A, Burger J (2013) 2000 years of parallel societies in stone age Central Europe. Science 342:479–481. doi: 10.1126/science.1245049 CrossRefGoogle Scholar
  11. Bourgeois QPJ (2013) Monuments on the horizon: the formation of the barrow landscape throughout the 3rd and 2nd millennium BC. Sidestone Press, LeidenGoogle Scholar
  12. Bryson R (2005) Archeoclimatology. In: Oliver JE (ed) Encyclopedia of world climatology. Springer Netherlands, Dordrecht, pp. 58–63CrossRefGoogle Scholar
  13. Clason AT (1970) The animal bones of the Bandkeramik and the middle age settlements near Bylany in bohemia. Paleohist 14:1–17Google Scholar
  14. Collard M, Edinborough K, Shennan S, Thomas MG (2010) Radiocarbon evidence indicates that migrants introduced farming to Britain. J Archaeol Sci 37:866–870. doi: 10.1016/j.jas.2009.11.016 CrossRefGoogle Scholar
  15. Contreras DA, Meadows J (2014) Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. J Archaeol Sci 52:591–608. doi: 10.1016/j.jas.2014.05.030 CrossRefGoogle Scholar
  16. Crombé P, Robinson E (2014) 14C dates as demographic proxies in Neolithisation models of northwestern Europe: a critical assessment using Belgium and Northeast France as a case-study. J Archaeol Sci 52:558–566. doi: 10.1016/j.jas.2014.02.001 CrossRefGoogle Scholar
  17. de Capitani, A, Deschler-Erb, S, Leuzinger, U, Marti-Grädel, E, Schibler, J (2002) Die jungsteinzeitliche Seeufersiedlung Arbon - Bleiche 3. Bd. 2: Funde, Archäologie im Thurgau, Departement für Erziehung und Kultur des Kantons Thurgau, Frauenfeld.Google Scholar
  18. Diers S, Jansen D, Alsleben A, Dörfler W, Müller J, Mischka D (2014) The western Altmark versus Flintbek – palaeoecological research on two megalithic regions. J Archaeol Sci 41:185–198. doi: 10.1016/j.jas.2013.07.036 CrossRefGoogle Scholar
  19. Dobeš M (2013) Měď v eneolitických Čechách, Dissertationes Archaeoogicae Brunenses / Pragensesque 16, Filozofická fakulta Univerzity Karlovy v. Praze, PrahaGoogle Scholar
  20. Dörfler W (2008) Das 3. Jahrtausend v. Chr. in hoch auflösenden Pollendiagramen aus Norddeutschland. In: Dörfler W, Müller J (eds) Umwelt - Wirtschaft - Siedlungen Im Dritten Vorchristlichen Jahrtausend Mitteleuropas Und Südskandinavien. Internationale Tagung Kiel 4.-6. November 2005, Offa Bücher 84. Wachholz Verlag, Neumünster, pp. 135–148Google Scholar
  21. Dreslerová D (2012) Human response to potential robust climate change around 5500 cal BP in the territory of Bohemia (the Czech Republic). Interdiscip Archaeol Nat Sci Archaeol 3(1):43–55Google Scholar
  22. Dreslerová D, Kočár P (2013) Trends in cereal cultivation in the Czech Republic from the Neolithic to the Migration Period (5500 b.C.–a.D. 580). Veg Hist Archaeobotany 22:257–268. doi: 10.1007/s00334-012-0377-8
  23. Dreslerová G (2006) Vyhodnocení zvířecích kostí z neolitického sídliště Těšetice-Kyjovice (okr. Znojmo, Česká republika). Archeologické rozhledy 58:3–32Google Scholar
  24. Dufraisse A (2008) Firewood management and woodland exploitation during the late Neolithic at Lac de Chalain (Jura, France). Veg Hist and Archaeobot 17:199–210Google Scholar
  25. Ebersbach R (2002) Von Bauern und Rindern: eine Ökosystemanalyse zur Rinderhaltung in bäuerlichen Gesellschaften als Grundlage zur Modellbildung im Neolithikum, Basler Beiträge zur Archäologie 15. Schwabe, BaselGoogle Scholar
  26. Ehrmann O, Biester H, Bogenrieder A, Rösch M (2014) Fifteen years of the Forchtenberg experiment—results and implications for the understanding of Neolithic land use. Veg Hist and Archaeobot 23:5–18. doi: 10.1007/s00334-014-0452-4 CrossRefGoogle Scholar
  27. Fehren-Schmitz L (2012) Population dynamics, cultural evolution and climate change in pre-Columbian western South America. In: Kaiser E, Burger J, Schier W (eds) Population dynamics in prehistory and early history. De Gruyter, Berlin, Boston, pp. 55–74Google Scholar
  28. Fleckinger A (2002) Ötzi, der Mann aus dem Eis: alles Wissenswerte zum Nachschlagen und Staunen. Folio s, Folio Verlag, WienGoogle Scholar
  29. Fokkens H (1986) From shifting cultivation to short fallow cultivation: late Neolithic change in the Netherlands reconsidered. In: Fokkens H, Banga P, Bierma M (eds) Op Zoek Naar Mens En Materiële Cultuur. Rijks Universiteit Groningen, Groningen, pp. 5–19Google Scholar
  30. Furmanek M, Krupski M, Ehlert M, Grześkowiak M, Hałuszko A, Mackiewicz M, Sady A (2013) Dobkowice revisited. Interdisciplinary research on an enclosure of the Jordanów culture. Anthropol 51:375–396Google Scholar
  31. Gardner AR (2002) Neolithic to copper age woodland impacts in Northeast Hungary? Evidence from the pollen and sediment chemistry records. The Holocene 12:541–553CrossRefGoogle Scholar
  32. Gaillard MJ (2013) POLLEN METHODS AND STUDIES | archaeological applications. In: Elias SA, Mock CJ (eds) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp. 880–904CrossRefGoogle Scholar
  33. Gronenborn D, Strien HC, Dietrich S, Sirocko F (2014) “Adaptive cycles” and climate fluctuations: a case study from linear pottery culture in western Central Europe. J Archaeol Sci 51:73–83. doi: 10.1016/j.jas.2013.03.015
  34. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, Harney E, Stewardson K, Fu Q, Mittnik A, Bánffy E, Economou C, Francken M, Friederich S, Pena RG, Hallgren F, Khartanovich V, Khokhlov A, Kunst M, Kuznetsov P, Meller H, Mochalov O, Moiseyev V, Nicklisch N, Pichler SL, Risch R, Rojo Guerra MA, Roth C, Szécsényi-Nagy A, Wahl J, Meyer M, Krause J, Brown D, Anthony D, Cooper A, Alt KW, Reich D (2015) Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:207–211. doi: 10.1038/nature14317
  35. Halstead P (2014) Two oxen ahead: pre-mechanized farming in the Mediterranean. Willey-Blackwell, Hoboken, New JerseyCrossRefGoogle Scholar
  36. Hassan FA (1981) Demographic archaeology. Academic Press, LondonCrossRefGoogle Scholar
  37. Higgins P, MacFadden BJ (2009) Seasonal and geographic climate variabilities during the last glacial maximum in North America: applying isotopic analysis and macrophysical climate models. Palaeogeogr Palaeoclimatol Palaeoecol 283:15–27. doi: 10.1016/j.palaeo.2009.08.015 CrossRefGoogle Scholar
  38. Hinz M, Feeser I, Sjögren KG, Müller J (2012) Demography and the intensity of cultural activities: an evaluation of Funnel Beaker societies (4200–2800 cal BC). J Archaeol Sci 39:3331–3340. doi: 10.1016/j.jas.2012.05.028
  39. Jacomet S, Ebersbach R, Akeret O, Antolin F, Baum T, Bogaard A, Brombacher C, Bleicher NK, Heitz-Weniger A, Hüster-Plogmann H, Gross E, Kühn M, Rentzel P, Steiner BL, Wick L, Schibler JM (2016) On-site data cast doubts on the hypothesis of shifting cultivation in the late Neolithic (c. 4300-2400 cal. BC): landscape management as an alternative paradigm. The Holocene 26:1858–1874. doi: 10.1177/0959683616645941 CrossRefGoogle Scholar
  40. Jamrichová E, Potůčková A, Horsák M, Hajnalová M, Bárta P, Tóth P, Kuneš P (2014) Early occurrence of temperate oak-dominated forest in the northern part of the little Hungarian plain, SW Slovakia. The Holocene 24:1810–1824. doi: 10.1177/0959683614551225 CrossRefGoogle Scholar
  41. Kienlin TL (2014) Aspects of metalworking and society from the Black Sea to the Baltic Sea from the fifth to the second millennium BC. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer New York, New York, NY, pp. 447–472CrossRefGoogle Scholar
  42. Klassen, L, Cassen, S, Pétrequin, P (2012) Alpine axes and early metallurgy, In: Pétrequin, P, Cassen, S, Errera, M, Klassen, L, Sheridan, A, Pétrequin, AM (eds), JADE. Grandes Haches Alpines Du Néolithique Européen. Ve et IVe Millénaires Av. J.-C. Presses Universitaires de Franche-Comté (No. 1224) and Centre de Recherche Archéologique de la Vallée de l’Ain, Besançon and Gray, pp 1280–1309.Google Scholar
  43. Klooß S (2014) They were fishing in the sea and coppicing the forest. Ber der Römisch-Ger Komm 92(2011):251–274Google Scholar
  44. Kolář J, Macek M, Tkáč P, Szabó P (2016) Spatio-temporal modelling as a way to reconstruct patterns of past human activities. Archaeom 58:513–528. doi: 10.1111/arcm.12182 CrossRefGoogle Scholar
  45. Koschik H (ed) (2004) Der bandkeramische Siedlungsplatz von Erkelenz-Kückhoven. 1: Untersuchungen zum bandkeramischen Siedlungsplatz Erkelenz-Kückhoven, Kreis Heinsberg (Grabungskampagnen 1989–1994): Archäologie, Rheinische Ausgrabungen 54. von Zabern, MainzGoogle Scholar
  46. Krause R (2003) Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtliche Forschungen. Verlag Marie Leidorf GmbH, Rahden/WestfGoogle Scholar
  47. Kuča M, Kovář JJ, Nývltová-Fišáková M, Škrdla P, Prokeš L, Vaškových M, Schenk Z (2012) Chronologie neolitu na Moravě: předběžné výsledky. Přehled výzkumů 53:51–64Google Scholar
  48. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P (2015) The origin of grasslands in the temperate forest zone of east-Central Europe: long-term legacy of climate and human impact. Quat Sci Rev 116:15–27. doi: 10.1016/j.quascirev.2015.03.014 CrossRefGoogle Scholar
  49. Kyselý R (2012) Paleoekonomika lengyelského období a eneolitu Čech a Moravy z pohledu archeozoologie. Památ archeol 103:5–70Google Scholar
  50. Lechterbeck J, Edinborough K, Kerig T, Fyfe R, Roberts N, Shennan S (2014a) Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe. The Holocene 24:1297–1307. doi: 10.1177/0959683614540952 CrossRefGoogle Scholar
  51. Lechterbeck J, Kerig T, Kleinmann A, Sillmann M, Wick L, Rösch M (2014b) How was Bell Beaker economy related to Corded Ware and Early Bronze Age lifestyles? Archaeological, botanical and palynological evidence from the Hegau, western Lake Constance region. Environ Archaeol 19:95–113. doi: 10.1179/1749631413Y.0000000010
  52. Madsen T, Jensen HJ (1982) Settlement and land use in early Neolithic Denmark. Annalecta Praehist Leiden 15:63–86Google Scholar
  53. Mischka D (2011) The Neolithic burial sequence at Flintbek LA 3, North Germany, and its cart tracks: a precise chronology. Antiquity 85:742–758. doi: 10.1017/S0003598X00068289 CrossRefGoogle Scholar
  54. Mischka D (2014) The significance of plough marks for the economic and social change and the rise of the first monumental burial architecture in early Neolithic northern Central Europe. In: Schulz Paulsson B, Gaydarska B (eds) Neolithic and copper age monuments, Emergence, Function and the Social Construction of the Landscape, BAR International Series, vol 2625. Archaeopress, Oxford, pp. 125–137Google Scholar
  55. Müller J (2004) Typologieunabhängige Datierungen und die Rekonstruktion prähistorischen Gessellschaften. Archäologie in Sachs-Anhalt 2:21–29Google Scholar
  56. Müller, J (2013) Demographic traces of technological innovation, social change and mobility: from 1 to 8 million Europeans (6000–2000 BCE), In: Kadrow, S, Włodarczak, P (eds), Environment and Subsistence - Forty Years after Janusz Kruk’s “Settlement Studies...,” Studien Zur Archäologie in Ostmitteleuropa / Studia Nad Pradzejami Europy Środkowej. Mitel - Dr. Rudolf Habelt GmbH, Rzeszów - Bonn, pp 1–14.Google Scholar
  57. Pavlů I (2012) Models and scenarios of the Neolithic in Central Europe. Doc Praehist 39:95–102CrossRefGoogle Scholar
  58. Poláček L (ed) (1999) Studien zum Burgwall von Mikulčice, Band, vol 4. Archäologisches Institut der Akademie der Wissenschaften der Tschechischen Republik Brno, BrnoGoogle Scholar
  59. Price DT (1995) Social inequality at the origins of agriculture. In: Price TD, Feinman GM (eds) Foundations of social inequality. Plenum Press, New York, pp. 129–154CrossRefGoogle Scholar
  60. Rick JW (1987) Dates as data: an examination of the Peruvian Preceramic radiocarbon record. Am Antiquity 52:55–73. doi: 10.2307/281060 CrossRefGoogle Scholar
  61. Riehl S, Bryson R, Pustovoytov K (2008) Changing growing conditions for crops during the Near Eastern Bronze Age (3000–1200 BC): the stable carbon isotope evidence. J Archaeol Sci 35:1011–1022. doi: 10.1016/j.jas.2007.07.003
  62. Rösch M, Ehrmann O, Kury B, Bogenrieder A, Herrmann L, Schier W (2008) Spätneolithische Landnutzung im nördlichen Alpenvorland: Beobachtungen - Hypothesen - Experimente. In: Dörfler W, Müller J (eds) Umwelt - Wirtschaft - Siedlungen Im Dritten Vorchristlichen Jahrtausend Mitteleuropas Und Südskandinavien. Internationale Tagung Kiel 4.-6. November 2005, Offa Bücher 84. Wachholz Verlag, Neumünster, pp. 301–315Google Scholar
  63. Schibler J, Jacomet S (2010) Short climatic fluctuations and their impact on human economies and societies: the potential of the Neolithic lake shore settlements in the alpine foreland. Environ Archaeol 15:173–182. doi: 10.1179/146141010X12640787648856 CrossRefGoogle Scholar
  64. Schier W, Ehrmann O, Rösch M, Bogenrieder A, Hall M, Herrmann L, Schulz E (2013) The economics of Neolithic swidden cultivation: results of an experimental long-term project in Forchtenberg (Baden-Württemberg, Germany). In: Kerig T, Zimmermann A (eds) Economic archaeology. From structure to performance in European archaeology, Universitätsforschungen zur Prähistorischen Archäologie. Verlag Dr. Rudolf Habelt GmbH, Bonn, pp. 97–106Google Scholar
  65. Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, Kerig T, Manning K, Thomas MG (2013) Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun 4. doi: 10.1038/ncomms3486
  66. Sherratt A (1981) Plough and pastoralism: aspects of the secondary products revolution. In: Hodder I, Isaac GL, Hammond N (eds) Patterns of the past: studies in honour of David Clarke. Cambridge University Press, Cambridge, pp. 261–305Google Scholar
  67. Sibson R (1981) A brief description of natural neighbor interpolation. In: Interpolating Multivariate Data. Willey, New York, pp. 21–36Google Scholar
  68. Sørensen MLS (1997) Material culture and typology. Curr Swed Archaeol 5:179–192Google Scholar
  69. Stevens CJ, Fuller DQ (2012) Did Neolithic farming fail? The case for a Bronze Age agricultural revolution in the British isles. Antiquity 86:707–722. doi: 10.1017/S0003598X00047864
  70. Stevens CJ, Fuller DQ (2015) Alternative strategies to agriculture: the evidence for climatic shocks and cereal declines during the British Neolithic and Bronze Age (a reply to bishop). World Archaeol 47:856–875. doi: 10.1080/00438243.2015.1087330
  71. Sugita S (2007) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17:229–241. doi: 10.1177/0959683607075837 CrossRefGoogle Scholar
  72. Svobodová H (1997) Die Entwicklung der Vegetation in Südmähren (Tschechien) während des Spätglazials und Holozäns - eine palynologische Studie. Verh der Zool-Bot Gesellschaft in Österreich 134:317–356Google Scholar
  73. Tallavaara M, Seppa H (2011) Did the mid-Holocene environmental changes cause the boom and bust of hunter-gatherer population size in eastern Fennoscandia? The Holocene 22:215–225. doi: 10.1177/0959683611414937
  74. Timpson A, Colledge S, Crema E, Edinborough K, Kerig T, Manning K, Thomas MG, Shennan S (2014) Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J Archaeol Sci 52:549–557. doi: 10.1016/j.jas.2014.08.011 CrossRefGoogle Scholar
  75. Timpson A, Manning K, Shennan S (2015) Inferential mistakes in population proxies: a response to Torfing’s “Neolithic population and summed probability distribution of 14C-dates”. J Archaeol Sci 63:199–202. doi: 10.1016/j.jas.2015.08.018 CrossRefGoogle Scholar
  76. Torfing T (2015) Neolithic population and summed probability distribution of 14C-dates. J Archaeol Sci 63:193–198. doi: 10.1016/j.jas.2015.06.004 CrossRefGoogle Scholar
  77. Watson D (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, OxfordGoogle Scholar
  78. Williams AN (2012) The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. of Archaeol. Sci. 39:578–589. doi: 10.1016/j.jas.2011.07.014 CrossRefGoogle Scholar
  79. Weninger B, Harper T (2015) The geographic corridor for rapid climate change in Southeast Europe and Ukraine. Archäol in Eurasien 31:475–505Google Scholar
  80. Whitehouse NJ, Schulting RJ, McClatchie M, Barratt P, McLaughlin TR, Bogaard A, Colledge S, Marchant R, Gaffrey J, Bunting MJ (2014) Neolithic agriculture on the European western frontier: the boom and bust of early farming in Ireland. J. of Archaeol. Sci. 51:181–205. doi: 10.1016/j.jas.2013.08.009 CrossRefGoogle Scholar
  81. Whitehouse NJ, Smith D (2010) How fragmented was the British Holocene wildwood? Perspectives on the “Vera” grazing debate from the fossil beetle record. Quat Sci Rev 29:539–553. doi: 10.1016/j.quascirev.2009.10.010 CrossRefGoogle Scholar
  82. Woodbridge J, Fyfe RM, Roberts N, Downey S, Edinborough K, Shennan S (2014) The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. J of Archaeol Sci 51:216–224. doi: 10.1016/j.jas.2012.10.025 CrossRefGoogle Scholar
  83. Zimmermann A, Richter J, Frank T, Wendt KP (2005) Landschaftsarchäologie II - Überlegungen zu Prinzipien einer Landschaftsarchäologie. Ber. der Römisch-Ger. Komm 85(2004):37–95Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Vegetation EcologyInstitute of Botany of the Czech Academy of SciencesBrnoCzech Republic
  2. 2.Institute of Archaeology and Museology, Faculty of ArtsMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Botany, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  4. 4.Department of ArchaeologyConstantine the Philosopher University in NitraNitraSlovakia
  5. 5.Department of GIS and Remote SensingInstitute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic

Personalised recommendations