Archaeological and Anthropological Sciences

, Volume 11, Issue 2, pp 455–467 | Cite as

Cortical bone loss in a sample of human skeletons from the Muge Shell middens

  • Cláudia Umbelino
  • Francisco CurateEmail author
  • Andreia Perinha
  • Teresa Ferreira
  • Eugénia Cunha
  • Nuno Bicho
Original Paper


The Muge shell middens of Cabeço da Arruda, Cabeço da Amoreira and Moita do Sebastião (central Portugal) have been key sites of archaeological research for 150 years, possibly working as residential sites occupied by semi-sedentary communities during the final Mesolithic. The purposes of this article include the biocultural assessment of metacarpal cortical bone fragility and its associations with age at death, sex and osteoporotic fractures in the Portuguese Mesolithic, as well as a diachronic comparison of cortical bone health in Mesolithic (N = 34) and modern reference (N = 219) samples. Cortical bone at the Muge shell middens displays age and sex-specific trajectories of periosteal apposition and endosteal bone loss, most likely associated with hormonal and behavioural/cultural influences. Metacarpal endocortical bone loss seems to increase with age at death in females, with a simultaneous expansion of the diaphysis. The overall pattern of cortical bone health is similar to the pattern observed in a reference skeletal collection, but elderly women from Muge seem to lose less cortical bone than late twentieth century counterparts from Coimbra. Two older males exhibited vertebral compression fractures, but only one is possibly related with bone fragility.


Metacarpal radiogrammetry Medullary width Diaphysis total width Osteoporotic fractures Mesolithic 



We wish to thank Dr. Miguel Ramalho for allowing us to study the Muge skeletal material housed at Museu do Instituto Geológico e Mineiro; the Serviço de Imagiologia do Centro Hospitalar e Universitário de Coimbra; Célia Gonçalves for the image of the geographical location of the Muge shell middens; Fundação para a Ciência e Tecnologia (grant no. SFRH/BPD/74015/2010); and two anonymous reviewers for their insightful comments that greatly improved this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agarwal S (2008) Light and broken bones: examining and interpreting bone loss and osteoporosis in past populations. In: Katzenberg AK, Saunders S (eds) Biological anthropology of the human skeleton, 2nd edn. Wiley-Liss, New York, pp. 387–410CrossRefGoogle Scholar
  2. Agarwal S, Glencross B, Beauchesne P (2011) Bone growth, maintenance and loss in the Neolithic Community of Çatalhöyük, Turkey: preliminary results. Archaeological Research Facility Laboratory Reports, UC BerkeleyGoogle Scholar
  3. Amundsen D, Dyers C (1970) The age of menopause in Classical Greece and Rome. Hum Biol 42:79–86Google Scholar
  4. Arnaud JM (1987) Os concheiros mesolíticos dos vales do Tejo e Sado: semelhanças e diferenças. Arqueologia 15:53–64Google Scholar
  5. Bicho N, Umbelino C, Detry C et al (2010) The emergence of Muge mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J Isl Coast Archaeol 5:86–104CrossRefGoogle Scholar
  6. Bicho N, Cascalheira J, Marreiros J, et al (2013) Chronology of the Mesolithic occupation of the Muge valley, central Portugal: the case of Cabeço da Amoreira. Quatern Int 308–309:130–139Google Scholar
  7. Borgognini SM, Repetto TE (1986) Skeletal indicators of subsistence patterns and activity régime in the Mesolithic sample from Grotta dell’Uzzo (Trapani, Sicily): a case study. Hum Evol 1:331–351. doi: 10.1007/BF02436707 CrossRefGoogle Scholar
  8. Brickley M, Mays S, Ives R (2007) An investigation of skeletal indicators of vitamin D deficiency in adults: effective markers for interpreting past living conditions and pollution levels in 18th and 19th century Birmingham, England. Am J Phys Anthropol 79:67–79. doi: 10.1002/ajpa CrossRefGoogle Scholar
  9. Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol 5:227–238CrossRefGoogle Scholar
  10. Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239. doi: 10.1002/ajpa.10130 CrossRefGoogle Scholar
  11. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Arkansas Archaeological Survey, ArkansasGoogle Scholar
  12. Burger H, Van Daele PL, Grashuis K et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157CrossRefGoogle Scholar
  13. Cardoso H, Gomes JEA (2009) Trends in adult stature of peoples who inhabited the modern Portuguese territory from the Mesolithic to the late 20th century. Int J Osteoarchaeol 19:711–725CrossRefGoogle Scholar
  14. Cardoso JL, Rolão JM (1999–2000) Prospecções e escavações nos concheiros mesolíticos de Muge e Magos (Salvaterra de Magos): contribuição para a história dos trabalhos arqueológicos efectuados. Estudos Arqueológicos de Oeiras 8:83–240Google Scholar
  15. Carlson DS, Armelagos GJ, van Gerven DP (1976) Patterns of age related cortical bone loss (osteoporosis) within the femoral diaphysis. Hum Biol 48:295–314Google Scholar
  16. Chang W, Wickham H (2016) ggvis: interactive grammar of graphics. Accessed 24 May 2016
  17. Cho H, Stout SD (2003) Bone remodeling and age-associated bone loss in the past: an histomorphometric analysis of the Imperial Roman skeletal population of Isola Sacra. In: Agarwal SC, Stout S (eds) Bone loss and osteoporosis: an anthropological perspective. Kluwer Academic/Plenum Publishers, New York, pp. 91–101Google Scholar
  18. Cho H, Stout SD (2011) Age-associated bone loss and intraskeletal variability in the Imperial Romans. J Anthropol Sci 89:109–125. doi: 10.4436/jass.89007 Google Scholar
  19. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139CrossRefGoogle Scholar
  20. Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650CrossRefGoogle Scholar
  21. Cunha E, Cardoso F (2001) The osteological series from Cabeço da Amoreira (Muge, Portugal. Bull Mem Soc Anthropol Paris 13:323–333Google Scholar
  22. Cunha E, Umbelino C (1995) What can bones tell about labour and occupation: the analysis of skeletal markers of occupational stress in the identified skeletal collection of the anthropological Museum of the University of Coimbra (preliminary results). Antropol Port 13:49–68Google Scholar
  23. Cunha E, Wasterlain S (2007) The Coimbra identified osteological collections. In: Grupe G, Peters J (eds) Skeletal series and their socio-economic context. Marie Leidorf, GmbH, Rahden/Westf, pp. 23–33Google Scholar
  24. Curate F (2011) O perímetro do declínio. Osteoporose e fracturas de fragilidade em três amostras osteológicas identificadas Portuguesas—sécs. XIX & XX. Dissertation, University of Coimbra, CoimbraGoogle Scholar
  25. Curate F (2014a) Osteoporosis and paleopathology: a review. J Anthropol Sci 92:119–146. doi: 10.4436/JASS.92003 Google Scholar
  26. Curate F (2014b) Osteoporosis and nutrition—a paleopathological insight. Antropol Port 30:29–51. doi: 10.14195/2182-7982_31_2 CrossRefGoogle Scholar
  27. Curate F, Tavares A (2011) Cifosis vertebral en la pintura de Francisco Goya (1764–1824): un ejercicio de diagnóstico diferencial. In: González Martín A, Cambra-Moo O, Rascón Pérez J, et al (eds) Paleopatología: ciencia multidisciplinar. Sociedad de Ciencias Aranzadi, Donostia-San Sébastian, pp 611–616Google Scholar
  28. Curate F, Tavares A, Piombino-Mascali D, et al (2009) Assottigliamento corticale del femore e fratture da fragilità ossea: uno studio della Collezione Scheletrica Identificata di Coimbra (Portogallo). Arch per l’Antropologia e la Etnol CXXXIX:129–146Google Scholar
  29. Curate F, Assis S, Lopes C et al (2011) Hip fractures in the Portuguese archaeological record. Anthropol Sci 119:87–93. doi: 10.1537/ase.100211 CrossRefGoogle Scholar
  30. Curate F, Cunha E, Matos V et al (2015) Cortical bone loss and osteoporotic fractures in the Coimbra identified skeletal collection. Am J Phys Anthropol 156:114Google Scholar
  31. Curate F, Coelho J, Gonçalves D et al (2016a) A method for sex estimation using the proximal femur. Forensic Sci Int 266:579.e1–579.e7. doi: 10.1016/j.forsciint.2016.06.011 CrossRefGoogle Scholar
  32. Curate F, Silva TF, Cunha E (2016b) Vertebral compression fractures: towards a standard scoring methodology in paleopathology. Int J Osteoarchaeol 26:366–372. doi: 10.1002/oa.2418 CrossRefGoogle Scholar
  33. Dewey J, Armelagos G, Bartley M (1969) Femoral cortical involution in three Nubian archaeological populations. Hum Biol 41:13–28Google Scholar
  34. Drusini A, Bredariol S, Carrara N et al (2000) Cortical bone dynamics and age-related osteopenia in a Longobard archaeological sample from three graveyards of the Veneto region (Northeast Italy). Int J Osteoarch 10:268–279CrossRefGoogle Scholar
  35. Feik SA, Thomas C, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191:407–416CrossRefGoogle Scholar
  36. Felsenberg D, Silman AJ, Lunt M et al (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS. J Bone Miner Res 17:716–724. doi: 10.1359/jbmr.2002.17.4.716 CrossRefGoogle Scholar
  37. Ferreira MT, Umbelino C, Cunha E (2015) The Mesolithic skeletons from Muge: the 21st century excavations. In: Bicho N, Detry C, Price TD, Cunha E (eds) Proceedings of the Muge 150th: the 150th anniversary of the discovery of Mesolithic shellmiddens—volume 1. Chapter fifteen. Cambridge Scholars Publishing, Cambridge, pp. 199–208Google Scholar
  38. Frayer DW (1977) Dental sexual dimorphism in the European Upper Paleolithic and Mesolithic. J Dent Res 56:871CrossRefGoogle Scholar
  39. Frayer DW (1980) Sexual dimorphism and cultural evolution in the later Pleistocene and Holocene of Europe. J Hum Evol 9:399–415CrossRefGoogle Scholar
  40. Garn SM, Frisancho AR, Sandusky ST et al (1972) Confirmation of the sex difference in continuing subperiosteal apposition. Am J Phys Anthropol 36:377–380CrossRefGoogle Scholar
  41. Gilsanz V, Kovanlikaya A, Costin G et al (1997) Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82:1603–1607. doi: 10.1210/jcem.82.5.3942 Google Scholar
  42. Ginsburg E, Skaric-Juric T, Kobyliansky E et al (2001) Evidence on major gene control of cortical index in pedigree data from Middle Dalmatia, Croatia. Am J Hum Biol 13:398–408CrossRefGoogle Scholar
  43. Glencross B, Agarwal SC (2011) An investigation of cortical bone loss and fracture patterns in the neolithic community of Çatalhöyük, Turkey using metacarpal radiogrammetry. J Archaeol Sci 38:513–521. doi: 10.1016/j.jas.2010.10.004 CrossRefGoogle Scholar
  44. Gonçalves C (2014) Modelos preditivos de ocupação do território no Mesolítico entre os vales do Tejo e do Sado. Dissertation, University of Algarve, FaroGoogle Scholar
  45. Ives R (2007) An investigation of vitamin d deficiency osteomalacia and age-related osteoporosis in six post-medieval urban collections. Dissertation, University of Birmingham, BirminghamGoogle Scholar
  46. Ives R, Brickley MB (2004) A procedural guide to metacarpal radiogrammetry in archaeology. Int J Osteoarchaeol 17:7–17. doi: 10.1002/oa.709 CrossRefGoogle Scholar
  47. Jackes M (forthcoming) Muge Mesolithic heterogeneity: comparing Moita do Sebastião and Cabeço da Arruda. In: Proceedings of MESO 2010, SantanderGoogle Scholar
  48. Jackes M, Lubell D (1999) Human biological variability in the Portuguese Mesolithic. Arqueol (Porto) 24:25–42Google Scholar
  49. Jackes M, Meiklejohn C (2008) The paleodemography of Central Portugal and Mesolithic-Neolithic transition. In: Bocquet-Appel J-P (ed) Recent advances in paleodemography: data, techniques, patterns. Springer, Berlin, pp. 209–258CrossRefGoogle Scholar
  50. Jackes M, Lubell D, Meiklejohn C (1997) Healthy but mortal: human biology and the first farmers of Western Europe. Antiquity 71:639–658CrossRefGoogle Scholar
  51. Jepsen K, Andarawis-Puri N (2012) The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res 27:1916–1926. doi: 10.1002/jbmr.1643 CrossRefGoogle Scholar
  52. Jergas M (2008) Radiology of osteoporosis. In: Grampp S (ed) Radiology of osteoporosis. Springer, Berlin, pp 77–103CrossRefGoogle Scholar
  53. Johansson H, Kanis J, Oden et al (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20:1675–1682. doi: 10.1007/s00198-009-0845-x CrossRefGoogle Scholar
  54. Johnell O, Kanis J (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. doi: 10.1007/s00198-006-0172-4 CrossRefGoogle Scholar
  55. Kaptoge SK, Dalzell N, Jakes RW et al (2003) Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int 14:941–949CrossRefGoogle Scholar
  56. Kline RB (2010) Principles and practice of structural equation modeling. The Guildford Press, New YorkGoogle Scholar
  57. Le Goff J (1985) As doenças têm história. Livros Terramar, LisboaGoogle Scholar
  58. Lees B, Molleson T, Arnett T, Stevenson J (1993) Differences in proximal femur bone density over two centuries. Lancet 341:673–675CrossRefGoogle Scholar
  59. Lubell D, Jackes M (1985) Mesolithic-Neolithic continuity: evidence from chronology and human biology. In: Ramos M (ed) Actas da I Reunião do Quaternário Ibérico, pp 113–133Google Scholar
  60. Mays S (1996) Age-dependent bone loss in a medieval population. Int J Osteoarch 6:144–154. doi: 10.1002/(SICI)1099-1212(199603)6:2<144::AID-OA261>3.0.CO;2-G CrossRefGoogle Scholar
  61. Mays S (2000) Age-dependent cortical bone loss in women from 18th and early nineteenth century London. Am J Phys Anthropol 112:349–361. doi: 10.1002/1096-8644(200007)112:3<349::AID-AJPA6>3.0.CO;2-0 CrossRefGoogle Scholar
  62. Mays S (2001) Effects of age and occupation on cortical bone in a group of 18th–19th century British men. Am J Phys Anthropol 116:34–44. doi: 10.1002/ajpa.1099 CrossRefGoogle Scholar
  63. Mays S (2006a) A palaeopathological study of Colles’ fracture. Int J Osteoarchaeol 16:415–428. doi: 10.1002/oa.845 CrossRefGoogle Scholar
  64. Mays S (2006b) Age-related cortical bone loss in women from a 3rd–4th century AD population from England. 528:518–528. doi:  10.1002/ajpa
  65. Mays S, Lees B, Stevenson J (1998) Age-dependent bone loss in the femur in a medieval population. Int J Osteoarchaeol 8:97–106. doi: 10.1002/(SICI)1099-1212(199803/04)8:2<97::AID-OA412>3.0.CO;2-U CrossRefGoogle Scholar
  66. Mays S, Brickley M, Ives R (2009) Growth and vitamin D deficiency in a population from 19th century Birmingham, England. Am J Phys Anthropol 415:406–415. doi: 10.1002/oa Google Scholar
  67. Meiklejohn C, Schentag C, Venema A et al (1984) Socioeconomic change and patterns of pathology in the Mesolithic and Neolithic of Western Europe: some suggestions. In: Cohen MN, Armelagos GJ (eds) Paleopathology at the origins of agriculture. Academic, San Diego, pp. 75–100Google Scholar
  68. Meiklejohn C, Roksandic M, Jackes M et al (2009) Radiocarbon dating of Mesolithic human remains in Portugal. Mesolithic Miscellany 20:4–16Google Scholar
  69. Mendes Corrêa AA (1933) Les nouvelles fouilles à Muge (Portugal). XVe Congrès International d’Anthropologie et d’Archéologie Préhistorique, Paris 1931. Librairie E. Nourry, Paris, pp 1–16Google Scholar
  70. Mendes Corrêa AA (1934). Questions du Mésolithique Portugais. Proceedings of the First International Congress of Prehistoric and Protohistoric Sciences, London 1932. Oxford University Press, London, pp 89–91Google Scholar
  71. Morais MG (1983) A substituição das gerações em Portugal: análise regional (1930-75. Anal Soc 19:79–99Google Scholar
  72. Nieves JW, Formica C, Ruffing J et al (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535. doi: 10.1359/JBMR.041005 CrossRefGoogle Scholar
  73. O’Neill TW, Varlow DFJ, Cooper C et al (1996) The prevalence of vertebral deformity in European men and women: the European vertebral osteoporosis study. J Bone Miner Res 11:1010–1018CrossRefGoogle Scholar
  74. Ortner D (2003) Identification of pathological conditions in human skeletal remains. Academic, San DiegoGoogle Scholar
  75. Paula e Oliveira F (1888–1892) Nouvelles fouilles faites dans les Kjoekkenmoeddings de la vallée du Tage. Comunicações da Comissão dos Trabalhos Geológicos de Portugal II:57–81Google Scholar
  76. Pavelka M, Fedigan L (1991) Menopause: a comparative life history perspective. Yearb Phys Anthropol 34:13–38CrossRefGoogle Scholar
  77. Peck J, Stout SD (2007) Intraskeletal variability in bone mass. Am J Phys Anthropol 132:89–97CrossRefGoogle Scholar
  78. Post J (1971) Ages at menarche and menopause: some medieval authorities. Popul Stud 25:83–87CrossRefGoogle Scholar
  79. R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 24 May 2016
  80. Rewekant A (2001) Do environmental disturbances of an individual’s growth and development influence the later bone involution processes? A study of two mediaeval populations. Int J Osteoarchaeol 11:433–443. doi: 10.1002/oa.584 CrossRefGoogle Scholar
  81. Ribeiro MC (1884) Les kioekkenmoeddings de la Vallée du Tage. Compte Rendu de la IXème session du Congrès International d’Anthropologie et d’Archéologie Préhistoriques, Lisbonne 1880. Typographie de l’Académie des Sciences, Lisboa, pp 279–290Google Scholar
  82. Roche J, Veiga Ferreira O (1967) Les fouilles récentes dans les amas coquilliers mésolithiques de Muge (1952–1965). O Arquéologo Português I:19–41Google Scholar
  83. Rolão JMF (1999) Del Würm final al Holocénico en el Bajo Valle del Tajo (Complejo Arqueológico Mesolítico de Muge). Dissertation, University of Salamanca, SalamancaGoogle Scholar
  84. Ruff CB, Holt B, Niskanen M et al (2015) Gradual decline in mobility with the adoption of food production in Europe. Proc Natl Acad Sci 112:7147–7152. doi: 10.1073/pnas.1502932112 CrossRefGoogle Scholar
  85. Samuel SP, Baran GR, Wei Y et al (2009) Biomechanics—part II. In: Khurana JS (ed) Bone pathology. Humana Press, Totowa, pp. 69–77CrossRefGoogle Scholar
  86. Santos AL (1995) Death, sex and nutrition: analysis of the cause of death in the Coimbra human skeletal collection. Antropol Port 13:81–91Google Scholar
  87. Schäfer M-L, Pfeil A, Renz DM et al (2008) Effects of long-term immobilisation on cortical bone mass after traumatic amputation of the phalanges estimated by digital X-ray radiogrammetry. Osteoporos Int 19:1291–1299. doi: 10.1007/s00198-008-0570-x CrossRefGoogle Scholar
  88. Schmidt RA (2005) The contribution of gender to personal identity in the Southern Scandinavian Mesolithic. In: Casella EC, Fowler C (eds) The archaeology of plural and changing identities—beyond identification. Kluwer Academic/Plenum Publishers, New York, pp. 79–108CrossRefGoogle Scholar
  89. Seeman E (2003) Invited review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151. doi: 10.1152/japplphysiol.00564.2003 CrossRefGoogle Scholar
  90. Seeman E (2008) Structural basis of growth-related gain and age-related loss of bone strength. Rheumathology 47:iv2–iv8. doi: 10.1093/rheumatology/ken177 CrossRefGoogle Scholar
  91. Silva AM (1995) Sex assesment using the calcaneus and talus. Antropol Port 13:107–119Google Scholar
  92. Sofaer J (2004) The body as material culture – A theoretical osteoarchaeology. Cambridge University Press, CambridgeGoogle Scholar
  93. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296. doi: 10.1111/j.1556-4029.2010.01635.x CrossRefGoogle Scholar
  94. Streeten E, Ryan K, McBride DJ et al (2005) The relationship between parity and bone mineral density in women characterized by a homogeneous lifestyle and high parity. J Clin Endocrinol Metab 90:4536–4541. doi: 10.1210/jc.2004-1924 CrossRefGoogle Scholar
  95. Szulc P, Seeman E, Duboeuf F et al (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Mineral Res 21:1856–1863. doi: 10.1359/jbmr.060904 CrossRefGoogle Scholar
  96. Thompson D, Guness-Hey M (1981) Bone mineral-osteon analysis of Yupik-Inupiaq skel- etons. Am J Phys Anthropol 55:1–7CrossRefGoogle Scholar
  97. Ulijaszek SJ, Kerr DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82:165–177CrossRefGoogle Scholar
  98. Umbelino C (2006) Outros sabores do passado: as análises de oligoelementos e de isótopos estáveis na reconstituição da dieta das comunidades humanas do Mesolítico final e do Neolítico final/Calcolítico do território português. Dissertation, University of Coimbra, CoimbraGoogle Scholar
  99. Umbelino C, Gonçalves C, Figueiredo O et al (2015) Life in the Muge shellmiddens: inferences from the new skeletons recovered from Cabeço da Amoreira. In: Bicho N, Detry C, Price TD, Cunha E (eds) Proceedings of the Muge 150th: the 150th anniversary of the discovery of Mesolithic shellmiddens—volume 1. Chapter sixteen. Cambridge Scholars Publishing, Cambridge, pp. 209–224Google Scholar
  100. Van Gerven D, Armelagos G, Bartley M (1969) Roentgenographic and direct measurement of femoral cortical involution in a prehistoric Mississippian population. Am J Phys Anthropol 31:23–38CrossRefGoogle Scholar
  101. Villotte S, Churchill SE, Dutour OJ et al (2010) Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies. J Hum Evol 59:35–43. doi: 10.1016/j.jhevol.2010.02.001 CrossRefGoogle Scholar
  102. Virtamä P, Helelä T (1969) Radiographic measurements of cortical bone. Variation in a normal population between 1 and 90 years of age. Acta Radiol (Supplementum) 293:1–268Google Scholar
  103. Ward R, Jamison P (1991) Measurement precision and reliability in craniofacial anthropometry: implications and suggestions for clinical applications. J Craniofac Genet Dev Biol 11:156–164Google Scholar
  104. Yasaku K, Ishikawa-Takata K, Koitaya N et al (2009) One-year change in the second metacarpal bone mass associated with menopause nutrition and physical activity. J Nutr Heal Aging 13:545–549. doi: 10.1007/s12603-009-0105-y CrossRefGoogle Scholar
  105. Zebaze R, Seeman E (2003) Epidemiology of hip and wrist fractures in Cameroon, Africa. Osteoporos Int 14:301–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cláudia Umbelino
    • 1
    • 2
  • Francisco Curate
    • 1
    • 2
    • 3
    • 4
    Email author
  • Andreia Perinha
    • 3
  • Teresa Ferreira
    • 1
    • 3
    • 5
  • Eugénia Cunha
    • 3
    • 5
  • Nuno Bicho
    • 2
  1. 1.Research Centre for Anthropology and Health, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Interdisciplinary Center for Archaeology and Evolution of Human BehaviorUniversity of AlgarveAlgarvePortugal
  3. 3.Laboratory of Forensic Anthropology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.Departamento de Ciências da VidaUniversidade de CoimbraCoimbraPortugal
  5. 5.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations