Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 4, pp 805–816 | Cite as

Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes

  • Miguel Ángel Maté-GonzálezEmail author
  • Juan Francisco Palomeque-González
  • José Yravedra
  • Diego González-Aguilera
  • Manuel Domínguez-Rodrigo
Original Paper

Abstract

In a previous article, we presented an innovative method to analyze cut marks produced with metal tools on animal bones from a metrical and tridimensional perspective (Maté-González et al. 2015). Such analysis developed a low-cost alternative technique to traditional microscopic methods for the tridimensional reconstruction of marks, using their measurements and sections. This article presents the results of an experimental study to test this photogrammetric and morphometric method for differentiating cut marks generated with metal, flint, and quartzite flakes. The results indicate statistically significant differences among cut marks produced by these three types of raw material. These results encourage the application of this method to archeological assemblages in order to establish a link between carcass processing and lithic reduction sequences on different raw materials and also to define the kind of tools used during butchery.

Keywords

Taphonomy Cut marks Micro-photogrammetry Computer vision Image-based modeling Raw material 

Notes

Acknowledgments

The authors would like to thank the TIDOP Group from the Department of Cartographic and Land Engineering of the High Polytechnics School of Ávila, University of Salamanca, for the use of tools and facilities. We also want to thank Jesús de Vicente y Oliva, industrial engineer and teacher at the Polytechnics University of Madrid, for his help. We also want to thank Aixa Vidal for the translation and revision of this paper. We would like to recognize the technical support provided by C.A.I. Arqueometry and archeological analysis from Complutense University, which have been very useful to carry out the present work. Finally, we express our gratitude to the anonymous reviewers.

References

  1. Andrews P (1995) Experiments in taphonomy. J Archaeol Sci 22:147–153CrossRefGoogle Scholar
  2. Andrews P, Cook J (1985) Natural modifications to bones in a temperate setting. Man 20:675–691CrossRefGoogle Scholar
  3. Bartelink EJ, Wiersema JM, Demaree RS (2001) Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. J Forensic Sci 46:1288–1293CrossRefGoogle Scholar
  4. Behrensmeyer AK, Gordon KD, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319:768–771CrossRefGoogle Scholar
  5. Bello SM (2011) New results from the examination of cut-marks using three-dimensional imaging. In: Ashton N, Lewis SG, Stringer C (eds) The ancient human occupation of Britain. The Netherlands, Amsterdam, pp. 249–262CrossRefGoogle Scholar
  6. Bello SM, Soligo C (2008) A new method for the quantitative analysis of cutmark micromorphology. J Archaeol Sci 35:1542–1552CrossRefGoogle Scholar
  7. Bello SM, De Groote I, Delbarre G (2013) Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone and antler. J Archaeol Sci 40(5):2464–2476Google Scholar
  8. Bello SM, Parfitt SA, Stringer CB (2009) Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes. J Archaeol Sci 36:1869–1880CrossRefGoogle Scholar
  9. Bello SM, Saladié P, Cáceres I, Rodríguez-Hidalgo A, Parfitt SA (2015) Upper Palaeolithic ritualistic cannibalism: Gough’s Cave (Somerset, UK): the human remains from head to toe. J Hum Evol 82:170–189CrossRefGoogle Scholar
  10. Binford LR (1981) Bones: ancient men, modern myths. Academic press, New YorkGoogle Scholar
  11. Blasco R (2008) Human consumption of tortoises at Level IV of Bolomor Cave Valencia, Spain. J Archaeol Sci 35:2839–2848CrossRefGoogle Scholar
  12. Blasco R, Fernández Peris J (2009) Middle Pleistocene bird consumption at Level XI of Bolomor Cave Valencia, Spain. J Archaeol Sci 36:2213–2223CrossRefGoogle Scholar
  13. Blasco R, Fernández Peris J (2012) A uniquely broad spectrum diet during the Middle Pleistocene at Bolomor Cave, Valencia, Spain. Quat Int 252:16–31CrossRefGoogle Scholar
  14. Blasco R, Rosel J, Fernández Peris J, Cáceres I, Vergès JM (2008) A new element of trampling: an experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J Archaeol Sci 35:1605–1618CrossRefGoogle Scholar
  15. Blumenschine RJ, Marean C, Capaldo S (1996) Blind test of inter-analyst correspondence and accuracy in the identification of cut marks. Percusion marks and carnivore tooth marks on bone surface Journal of Archaeological Sciencie 23:493–505Google Scholar
  16. Bonney H (2014) An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades. Am J Phys Anthropol 154:575–584CrossRefGoogle Scholar
  17. Boschin F, Crezzini J (2012) Morphometrical analysis on cut marks using a 3D digital microscope. Int J Osteoarchaeol 22:549–562CrossRefGoogle Scholar
  18. Bromage TG, Boyde A (1984) Microscopic criteria for the determination of directionality of cutmarks on bone. Am J Phys Anthropol 65:359–366CrossRefGoogle Scholar
  19. Bunn HT (1982) Meat eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa. Dissertation, University of California, Berkeley, Ph. DGoogle Scholar
  20. Choi K, Driwantoro D (2007) Shell tool use by early members of Homo erectus in Sangiran, central Java, Indonesia: cut mark evidence. J Archaeol Sci 34:48–58CrossRefGoogle Scholar
  21. Crezzini J, Boschin F, Boscato P, Wierer U (2014) Wild cats and cut marks: exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy). Quat Int 330:52–60CrossRefGoogle Scholar
  22. Cruz Uribe K, Klein RG (1994) Chew marks and cut marks on animal bones from the Kastelberg B and Dune field Middle Later Stone Age sites, Western Cape Province, Soyth Africa. J Archaeol Sci 21:35–49CrossRefGoogle Scholar
  23. De Heinzelin J, Clark JD, White T, Hart W, Renne P, Wolde Gabriel G, Beyene Y, Vrba E (1999) Environment and behavior of 2.5–million–year-old Bouri hominids. Science 284:625–629CrossRefGoogle Scholar
  24. De Juana S, Galán AB, Domínguez-Rodrigo M (2010) Taphonomic identification of cut marks made with lithic handaxes: an experimental study. J Archaeol Sci 37:1841–1850CrossRefGoogle Scholar
  25. Defleur A, White T, Valensi P, Slimak L, Crégut-Bonnoure E (1999) Neanderthal cannibalism at Moula-Guercy, Ardèche, France. Science 286:128–131CrossRefGoogle Scholar
  26. Domínguez-Rodrigo M, Alcalá L (2016) 3.3-Million-year-old stone tools and butchery traces? More evidence needed. PaleoAnthropology 2016:46–53. doi: 10.4207/PA.2016.ART99 Google Scholar
  27. Domínguez-Rodrigo M, Barba R, Egeland CP (2007) Deconstructing Olduvai. Springer Books, Netherland, A taphonomic study of the Bed I sitesGoogle Scholar
  28. Domínguez-Rodrigo M, Pickering TR, Bunn HT (2012) Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of 3.4-million-year-old butchery evidence from Dikika, Ethiopia. J Archaeol Sci 39:205–214Google Scholar
  29. Domínguez-Rodrigo M, Bunn HT, Yravedra J (2014) A critical re-evaluation of bone surface modification models for inferring fossil hominin and carnivore interactions through a multivariate approach: application to the FLK Zinj archaeofaunal assemblage (Olduvai Gorge, Tanzania). Quat Int 322-23:32–43CrossRefGoogle Scholar
  30. Domínguez-Rodrigo M, de Juana S, Galán AB, Rodríguez M (2009b) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36:2643–2654CrossRefGoogle Scholar
  31. Domínguez-Rodrigo M, de la Torre I, Luque L, Alcalá L, Mora R, Serrallonga J, Medina V (2002) The ST site complex at Peninj, West Lake Natron, Tanzania: implications for early hominid behavioural models. J Archaeol Sci 29:639–665CrossRefGoogle Scholar
  32. Domínguez-Rodrigo M, Mabulla A, Bunn HT, Barba R, Diez-Martín F, Egeland CP, Espílez E, Egeland A, Yravedra J, Sánchez P (2009a) Unraveling hominin behavior at another anthropogenic site from Olduvai Gorge (Tanzania): new archaeological and taphonomic research at BK, Upper Bed II. J Hum Evol 57:260–283CrossRefGoogle Scholar
  33. Domínguez-Rodrigo M, Pickering TR, Bunn HT (2010) Configurational approach to identifying the earliest hominin butchers. Proceedings of the National Academy of Sciences USA 107 (49): 20929–20934. Domínguez-Rodrigo M, Pickering, T.R., and Bunn, H.T. 2012. Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of 3.4 million-year-old butchery evidence from Dikika, Ethiopia. J Archaeol Sci 39:205–214CrossRefGoogle Scholar
  34. Domínguez-Rodrigo M, Pickering TR, Semaw S, Rogers M (2005) Cutmarked bones from archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. J Hum Evol 48:109–121CrossRefGoogle Scholar
  35. Dumbar JS; Webb D., Cring, D (1989) Cultural and non cultural modified bone and inundated paleoindian sites in the arcilla River, North Florida: an indicator of site integrity En Bonnichsen abd Modification. Centre for the study of the First American. Orono, 99–120Google Scholar
  36. During EM, Nilsson L (1991) Mechanical surface analysis of bone: a case study of cut marks and enamel hypoplasia on a Neolithic cranium from Sweden. Am J Phys Anthropol 84:113–125CrossRefGoogle Scholar
  37. Fernández-Jalvo Y, Díez JC, Bermúdez de Castro JM, Carbonell E, Arsuaga J (1996) Evidence of early cannibalism. Science 271:277–278CrossRefGoogle Scholar
  38. Fernández-Jalvo Y, Díez JC, Cáceres I, Rosell J (1999) Human cannibalism in the early Pleistocene of Europe (Gran Dolina, Sierra de Atapuerca, Spain). J Hum Evol 37:591–622CrossRefGoogle Scholar
  39. Finlayson C, Brown K, Blasco R, Rosell J, Negro J (2012) Birds of a feather: Neanderthal exploitation of raptors and corvids. PLoS One 79:45927CrossRefGoogle Scholar
  40. Fiorillo AR (1989) An experimental study of trampling: implications for the fossil record. In: Bonnichsen R, Sorg M (eds) Bone Modification. University of Maine Centre for the Study of the First Americans, Orono, pp. 61–75Google Scholar
  41. Fisher DC (1995) Bone surface modifications in zooarchaeology. J Archaeol Method Theory 2:7–65CrossRefGoogle Scholar
  42. Galán AB, Domínguez-Rodrigo M (2013) An experimental study of the anatomical distribution of cut marks created by filleting and disarticulation on the long bone ends. Archeometry 55:1132–1149CrossRefGoogle Scholar
  43. Gilbert WH, Richards GD (2000) Digital imaging of bone and tooth modification. Anat Rec 261:237–246CrossRefGoogle Scholar
  44. González-Aguilera D, Guerrero D, Hernández-López D, Rodríguez-González P, Pierrot M, Fernández-Hernández J (2013). PW, Photogrammetry Workbench. <http://www.isprs.org/catcon/catcon6.aspx> (accessed 30.04.14).
  45. Greenfield HJ (1999) The origins of metallurgy: distinguishing stone from metal cut-marks on bones from archaeological sites. J Archaeol Sci 26:797–808CrossRefGoogle Scholar
  46. Greenfield HJ (2004) The butchered animal bone remains from Ashqelon, Afridar-Area G. Antiqot 45:243–261Google Scholar
  47. Greenfield HJ (2006a) The butchered animal bones from Newe Yam, a submerged pottery Neolithic site off the Carmel Coast. J Israel Prehist Soc 36:173–200Google Scholar
  48. Greenfield HJ (2006b) Slicing cut marks on animal bones: diagnostics for identifying stone tool type and raw material. Journal of Field Archaeology 31:147–163CrossRefGoogle Scholar
  49. Kaiser TM, Katterwe H (2001) The application of 3D-Microprofilometry as a tool in the surface diagnosis of fossil and sub-fossil vertebrate hard tissue. An example from the Pliocene Upper Laetoli Beds, Tanzania. Int J Osteoarchaeol 11:350–356CrossRefGoogle Scholar
  50. Lartet E (1860) On the coexistence of man with certain extinct quadrupeds, proved by fossil bones from various Pleistocene deposits, bearing incisions made by sharp instruments. Quarterly Journal of the sociological society of London 16:471–479Google Scholar
  51. Lartet E, Christy H (1875) Reliquiae Acquitanicae being contributions to the archaeology and paleontology of Perigord and adjoining provinces of Southern France. London Willians and Nagorte, LondonGoogle Scholar
  52. Lewis JE (2008) Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons. J Archaeol Sci 35:2001–2008CrossRefGoogle Scholar
  53. Luhmann T, Robson S, Kyle S, Boehm J (2013) Close-range photogrammetry and 3D imaging. Walter De Gruyter, BerlinCrossRefGoogle Scholar
  54. Marín-Monfort MD, Pesquero MD, Fernández-Jalvo Y (2014) Compressive marks from gravel substrate on vertebrate remains: a preliminary experimental study. Quat Int 330:118–125CrossRefGoogle Scholar
  55. Martin H. (1907) Presentation d’ossements utilises de l’epoque Musterienne en Bourlon M. M. Giraux L. & Martin H. (1907). Un os utilise presolutrean a propos de os utilises Communique Faites a la société Prehistorica de la France le 23 mai 1907.8–16Google Scholar
  56. Martin H (1909) Desarticulation des quelques regions chez les rumiants et le cheval a l'epoque mousterienne. Bulletin de la Societé Préhistorique Française 7:303–310CrossRefGoogle Scholar
  57. Maté González MA, Yravedra J, González-Aguilera D, Palomeque-González JF, Domínguez-Rodrigo M (2015) Micro-photogrammetric characterization of cut marks on bones. J Archaeol Sci 62:128–142CrossRefGoogle Scholar
  58. McPherron SP, Alemseged Z, Marean CW, Wynn JG, Reed D, Geraads D, Bobe R, Béarat HA (2010) Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466:857–860CrossRefGoogle Scholar
  59. Monnier GF, Bischoff E (2014) Size matters. An evaluation of descriptive and metric criteria for identifying cut marks made by unmodified rocks during. J Archaeol Sci 50:305–317CrossRefGoogle Scholar
  60. Nicholson RA (1992) Bone survival the effects of sedimentary abrasion and trampling on fresh and cooked bone. Int J Osteoarchaeol:2: 79–2: 90Google Scholar
  61. Olsen SL (1988). The identification of stone and metal tool marks on bone artefact BAR 452: 337–360.Google Scholar
  62. Olsen SL, Shipman P (1988) Surface modification on bone: trampling vs butchery. J Archaeol Sci 15:535–553CrossRefGoogle Scholar
  63. Palomeque-González JF, San Juan-Blazquez M, Maté-González MA, Yravedra J, García-Vargas E, Martín-Perea DM, González-Aguilera D, Domínguez-Rodrigo M (2016) Pandora: a new morphometric and statistical software for analysing and distinguishing cut marks on bones. Int J Osteoarchaeol (in Press)Google Scholar
  64. Pickering T, Domínguez-Rodrigo M, Egeland CP, Brain CK (2004) New data and ideas on the foraging behavior of Early Stone Age hominids at Swartkrans Cave. South Africa South African Journal of Science 100:215–218Google Scholar
  65. Pobiner BL, Rogersb MJ, Monahan CM, Harrisd JWK (2009) New evidence for hominine carcass processing strategies at 1.5 Ma, Koobi Fora, Kenya. J Human Evolution 55:103–130CrossRefGoogle Scholar
  66. Sahnouni M, Rosell J, Van der Made J, Vergès JM, Ollé A, Kandi N, Harichane Z, Derradji A, Medig M (2012) The first evidence of cut marks and usewear traces from the Plio-Pleistocene locality of El-Kherba (Ain Hanech), Algeria: implications for early hominin subsistence activities circa 1.8 Ma. J Human Evolution 64:137–150CrossRefGoogle Scholar
  67. Saladié P, Huguet R, Díez C, Rosell J, Cáceres I, Rodríguez-Hidalgo A, Vallverdú J, Bermúdez de Castro JM, Carbonell E (2011) Carcass transport decisions in Homo antecessor subsistence strategies. J Human Evolution 61:425–446CrossRefGoogle Scholar
  68. Semaw S, Rogers MJ, Quade J, Renee PR, Butler RF, Stout D, Domínguez-Rodrigo M, Hart W, Pickering T, Simpson SW (2003) 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Human Evolution 45:169–177CrossRefGoogle Scholar
  69. Sherratt E (2014). Quick guide to Geomorph v. 2.0. http://www.public.iastate.edu/∼dcadams/PDFPubs/Quick%20Guide%20to%20Geomorph%20v2.0.pdf.
  70. Shipman P (1981) Life historia of a fossil. Harvard University Press, An Introduction to Taphonomy and PaleoecologyGoogle Scholar
  71. Shipman, P. (1988). Actualistic studies of animal and hominid activities In Olsen Sl. 261–285. En Olsen S. L. Scaning electron microscopy in Archaeology. BAR 452. Oxford.Google Scholar
  72. Shipman P, Rose J (1983) Early hominid hunting, buchering and carcass-processing behaviours: a roaches to tha fosil record. J Anthropol Archaeol 2:57–98CrossRefGoogle Scholar
  73. Smith MJ, Brickley MB (2004) Animals and interpretation of flint toolmarks found on bones from West Tump Long Barrow, Gloucestershire. Int J Osteoarchaeol 14:18–33CrossRefGoogle Scholar
  74. Spennerman DHR (1990) Don’t forget the bamboo on recognising and interpretating butchery narcks in tropical faunal assemblages some comments asking for cauting. Solomon S Davidson I Watson D (eds) Problems Solving Taphonomy Tempus 2:80–101Google Scholar
  75. Stringer C, Finlayson C, Barton RNE, Fernández-Jalvo Y, Cáceres I (2008) Neanderthal exploitation of marine mammals in Gibraltar. Proc Natl Acad Sci 10538:14319–14324CrossRefGoogle Scholar
  76. Thompson JC, McPherron S, Bobe R, Reed D, Barr A, Wynn J, Marean CW, Geraads D, Alemseged Z (2015) Taphonomy of fossils from the hominin-bearing deposits at Dikika, Ethiopia. J Hum Evol 86:112–135CrossRefGoogle Scholar
  77. Walker PL (1978) Butchering and stone tool function. Am Antiq 43:710–715CrossRefGoogle Scholar
  78. Walker PL, Long JC (1977) An experimental study of the morphological characteristics of cut marks. Am Antiq 42:605–616CrossRefGoogle Scholar
  79. West J, Louys J (2007) Differentiating bamboo from stone tool cut marks in the zooarchaeological record, with a discussion on the use of bamboo knives. J Archaeol Sci 34:512–518CrossRefGoogle Scholar
  80. White TD (1992) Prehistoric cannibalism at Mancos 5MTUMR-2346. Princeton University Press, PrincetonCrossRefGoogle Scholar
  81. Yravedra J, Domínguez-Rodrigo M, Santonja M, Pérez-González A, Panera J, Rubio-Jara S, Baquedano E (2010) Cut marks on the Middle Pleistocene elephant carcass of Áridos 2 (Madrid, Spain). J Archaeol Sci 37:2469–2476CrossRefGoogle Scholar
  82. Yravedra J, Morín J, Agustí E, Sanabria P, López M, Urbina D, López-Frailes FJ, López G, Illán Illán J (2009) Implicaciones Metalúrgicas de las marcas de corte en la transición Bronce Final-Hierro en el interior de la Península Ibérica. Gallaecia 28:77–92Google Scholar
  83. Yravedra J, Panera J, Rubio-Jara S, Manzano I, Expósito A, Pérez-González A, Soto E, López-Recio M (2014) Neanderthal and Mammuthus interactions at EDAR Culebro 1 (Madrid, Spain). J Archaeol Sci 42:500–508CrossRefGoogle Scholar
  84. Yravedra J, Rubio-Jara S, Panera J, Uribelarrea D, Pérez-González A (2012) Elephants and subsistence. Evidence of the human exploitation of extremely large mammal bones from the Middle Palaeolithic site of PRERESA (Madrid. Spain Journal of Archaeological Science 39:1063–1071CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miguel Ángel Maté-González
    • 1
    • 2
    Email author
  • Juan Francisco Palomeque-González
    • 3
  • José Yravedra
    • 3
    • 4
  • Diego González-Aguilera
    • 2
  • Manuel Domínguez-Rodrigo
    • 3
    • 4
  1. 1.C.A.I. Arqueometría y Análisis ArqueológicoComplutense UniversityMadridSpain
  2. 2.Department of Cartography and Terrain Engineering, Polytechnic School of AvilaUniversity of SalamancaAvilaSpain
  3. 3.Department of PrehistoryComplutense UniversityMadridSpain
  4. 4.Museo de los OrígenesIDEA (Institute of Evolution in Africa)MadridSpain

Personalised recommendations