Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 1, pp 141–156 | Cite as

Scattered shipwreck site prospection: the combined use of numerical modeling and documentary research (Fougueux, 1805)

  • T. Fernández-Montblanc
  • A. Izquierdo
  • M. Bethencourt
Original Paper

Abstract

A shipwreck site located off Sancti Petri sand spit (Cadiz, Spain) was identified as a Temeraire-class 74-gun French ship. The archaeological deposits relate it to the Fougueux, sunken after the Battle of Trafalgar. The site contains some pieces of the naval structure, 32 iron guns, and a large anchor, but two thirds of the ship is missing. Available information (including ship logbooks of weather observations and other historic documents) establishes that a dismasted French ship ran aground on 22 October 1805 and broke up into pieces on the 25th due to tempestuous weather. Combining that information and a set of numerical models (ocean, atmosphere, and dispersion), we aim to simulate different scenarios in order to determine the most probable areas for finding the shipwreck remains of the Fougueux, taking into account the uncertainty of the information used and the modeling limitations. The probability of finding scattered remains belonging to the Fougueux was calculated using the modeled scenarios. As a result, it was found that the high probability area contained four additional sites comprising 40 guns and 5 anchors whose characteristics and dating are similar to those of the previously known site. The results of our study highlight the value of numerical modeling in underwater archaeology as a tool for the identification and optimization of resources in prospecting scattered shipwreck sites.

Keywords

Shipwreck Numerical modeling Dispersion model Scattering Site formation Site prospection 

Notes

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER, Project CTM2010-16363 (ARQUEOMONITOR). This is the contribution n° 97 from the CEIMAR Journal Series. The coordinates of the original Fougueux site were supplied by The Underwater Archaeology Centre of Andalusia. Their studies are needed to understand the history of the Fougueux.

References

  1. Abascal AJ, Castanedo S, Mendez F, Medina R, Losada I (2009) Calibration of a Lagrangian transport model using drifting buoys deployed during the prestige oil spill. J Coast Res 25(1):80–90CrossRefGoogle Scholar
  2. Andersen OB (1995) Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry. J Geophys Res 100(C12):249–259Google Scholar
  3. ASCE (1996) State-of-the-art review of modelling transport and fate of oil spills. J Hydraul Eng 122:594–609CrossRefGoogle Scholar
  4. Beegle-Krause C (1999) GNOME: NOAA’s next-generation spill trajectory model. In: OCEANS’99 MTS/IEEE. Riding the crest into the 21st century, vol 3, pp 1262–1266Google Scholar
  5. Benavente J, Gracia FJ, López-Aguayo F (2000) Empirical model of morphodynamic beachface behaviour for low-energy mesotidal environments. Mar Geol 167:375–390CrossRefGoogle Scholar
  6. Bethencourt M (2009) Inspección superficial de los fondos marinos de Camposoto (San Fernando). Implicaciones medioambientales de los procesos de corrosión de los objetos metálicos situados sobre el fondo, ISDEFE, Madrid, pp IV1–IV208Google Scholar
  7. Bethencourt M, Romero-Pastor J, Rodríguez-Romero MJ (2007) Methods of metallurgical characterization of copper sheathing. Study of three shipwrecks of the Combined Square of Trafalgar (1805). I International Congress in Marine Sciences, Valencia (España), Abstract Book: 51Google Scholar
  8. Booij N, Ris RC, Holthuijsen LH (1999) A third generation wave model for coastal regions; part I: model description and validation. J Geophys Res 104:7649–7666CrossRefGoogle Scholar
  9. Breivik Ø, Allen AA (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J Mar Syst 69(1–2):99–113CrossRefGoogle Scholar
  10. Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) An operational search and rescue model for the Norwegian Sea and the North Sea. J Mar Syst 33(2):100–109Google Scholar
  11. Daniel P, Jan G, Cabioc’h F, Landau I, Loiseau E (2002) Drift modeling of cargo containers. Spill Sci Technol Bull 7(5–6):279–288CrossRefGoogle Scholar
  12. Davidson FJM, Allen A, Brassington GB, Breivik Ø, Daniel P, Kamachi M, Sato S, King B, Lefevre F, Sutton M, Kaneko H (2009) Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography 22(3):176–181CrossRefGoogle Scholar
  13. De Dominicis M, Falchetti S, Trotta F, Pinardi N, Giacomelli L, Napolitano E, Fazioli L, Sorgente R, Haley J, Lermusiaux P, Martins F, Cocco M (2014) A relocatable ocean model in support of environmental emergencies. Ocean Dyn 64(5):667–688CrossRefGoogle Scholar
  14. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  15. Del Río L, Gracia FJ, Benavente J (2013) Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 196:252–266CrossRefGoogle Scholar
  16. Deltares (2011a) Delft3D-WAVE—user manual, version: 3.04, revision 15779, report, Delft, NetherlandsGoogle Scholar
  17. Deltares (2011b) Delft3D-FLOW: simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments—user manual, version: 3.15, revision 18392, report, Delft, NetherlandsGoogle Scholar
  18. Döös K, Rupolo V, Brodeau L (2011) Dispersion of surface drifters and model-simulated trajectories. Ocean Model 39(3–4):301–310CrossRefGoogle Scholar
  19. Fernández-Montblanc T, Quinn R, Izquierdo A, Bethencourt M (2016) Evolution of shallow water wave-dominated shipwreck site: Fougueux (1805), Gulf of Cádiz, Geoarchaeology. in pressGoogle Scholar
  20. Font Tullot I (1983) Historia del clima de España: cambios climáticos y sus causas. In: Madrid, Instituto Nacional de Meteorología, pp 297Google Scholar
  21. González Aller-Hierro JI (2004) La Batalla de Trafalgar (1804–1805): Corpus Documental, Tomo II. In Secretaría General Técnica, Ministerio de Defensa, Madrid, pp 1156–1230Google Scholar
  22. Gracia FJ, Alonso, C, Anfuso, G, Benavente, J, Del Río, L, Domínguez, L, Martínez, JA (2005) Historical evolution and erosion problems in the Cádiz Coast. In: Gracia FJ (coord) (ed) Geomorphology of the South-Atlantic Spanish Coast. Sixth InternationalGoogle Scholar
  23. Gustavo Herrera R, García-Herrera R, Prieto L, Gallego D, Hernández E, Gimeno L, Können G, Koek F, Wheeler D, Wilkinson C, Del Rosario PM, Báez C, Woodruff S (2003) CLIWOC multilingual dictionary of meteorological terms: an English/Spanish/French/Dutch dictionary of windforce terms used by mariners from 1750 to 1850. CLIWOCGoogle Scholar
  24. Heath N (2011) Determining the effects of stokes drift on the movement of oil in the Gulf of Mexico. Honors Theses. Paper 17, pp 26Google Scholar
  25. IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CBO9781107415324, 1535 ppGoogle Scholar
  26. Kagan BA, Alvarez O, Izquierdo A, Mañanes R, Tejedor B, Tejedor L (2003) Weak wave/tide interaction in suspended sediment-stratified flow: a case study. Estuar Coast Shelf Sci 56:805–812CrossRefGoogle Scholar
  27. Kagan BA, Alvarez O, Izquierdo A (2005) Weak wind-wave/tide interaction over fixed and moveable bottoms: a formulation and some preliminary results. Cont Shelf Res 25:753–773CrossRefGoogle Scholar
  28. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915CrossRefGoogle Scholar
  29. Matsuzaki Y, Fujita I (2014) Horizontal turbulent diffusion at sea surface for oil transport simulation. Coast Eng Proc 34:1–10Google Scholar
  30. Muckelroy K (1976) The integration of historical and archaeological data concerning an historic wreck site: the ‘Kennemerland’. World Archaeol 7(3):280–290CrossRefGoogle Scholar
  31. Ni Z, Qiu Z, Su TC (2010) On predicting boat drift for search and rescue. Ocean Eng 37(13):1169–1179CrossRefGoogle Scholar
  32. O’Shea JM (2002) The archaeology of scattered wreck-sites: formation processes and shallow water archaeology in western Lake Huron. Int J Naut Archaeol 31(2):211–227CrossRefGoogle Scholar
  33. Pasquero C, Provenzale A, Babiano A (2011) Parameterization of dispersion in two-dimensional turbulence. J Fluid Mech 439:279–303Google Scholar
  34. Quinn R, Forsythe W, Breen C, Dean M, Lawrence M, Liscoe S (2002) Comparison of the maritime sites and monuments record with side-scan sonar and diver surveys: a case study from Rathlin Island, Ireland. Geoarchaeology 17:441–451CrossRefGoogle Scholar
  35. Quinn R, Dean M, Lawrence M, Liscoe S, Boland D (2005) Backscatter responses and resolution considerations in archaeological side-scan sonar surveys: a control experiment. J Archaeol Sci 32:1252–1264CrossRefGoogle Scholar
  36. Reyes-Reyes E, Bruno M, Izquierdo A (2010) A forced ocean-atmosphere model to perform long-term hydrodynamic response induced by atmospheric forcing within the Strait of Gibraltar. Rapp Comm Int Mer Médit 39:166Google Scholar
  37. Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions 2. Verification. J Geophys Res 104(4C):7667–7681CrossRefGoogle Scholar
  38. Rodríguez Mariscal NE, Rieth E, Izaguirre M (2010) Investigaciones en el pecio de Camposoto: hacia la identificación del navío francés Fougueux, Rev. PH 75:94–107Google Scholar
  39. Smyth TAG, Quinn R (2014) The role of computational fluid dynamics in understanding shipwreck site formation processes. J Archaeol Sci 45:220–225CrossRefGoogle Scholar
  40. Spaulding ML, Howlett E, Anderson E, Jayko K (1992) OILMAP: a global approach to spill modelling. 15th Annual Arctic and marine oil spill program, Technical Seminar, Edmonton, Alberta, CanadaGoogle Scholar
  41. Stewart DJ (1999) Formation processes affecting submerged archaeological sites: an overview. Geoarchaeology 14(6):565–587CrossRefGoogle Scholar
  42. Su T (1993) On predicting the person-in-water drift for search and grant rescue. Florida, Centre for Applied Stochastics Research Florida Atlantic University Boca Raton, FL 33431:83Google Scholar
  43. Ward IAK, Larcombe P, Veth P (1999) A new process-based model for wreck site formation. J Archaeol Sci 26:561–570CrossRefGoogle Scholar
  44. Wheeler D (1985) The weather at the Battle of Trafalgar. Wheather 40:338–346CrossRefGoogle Scholar
  45. Wheeler D (1987) The Trafalgar storm: 22–29 October 1805. Meteorol Mag 116(1380):197–205Google Scholar
  46. Wheeler D (1995) El tiempo durante la Batalla de Trafalgar (octubre 1805). Investig Geográficas 14:175–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • T. Fernández-Montblanc
    • 1
  • A. Izquierdo
    • 1
  • M. Bethencourt
    • 2
  1. 1.Department of Applied Physics, International Campus of Excellence of the Sea (CEI·MAR)University of CadizPuerto RealSpain
  2. 2.Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea (CEI·MAR)University of CadizPuerto RealSpain

Personalised recommendations