Archaeological and Anthropological Sciences

, Volume 10, Issue 1, pp 19–29 | Cite as

The aceramic production of Betula pubescens (downy birch) bark tar using simple raised structures. A viable Neanderthal technique?

  • Tine Schenck
  • Peter GroomEmail author
Original Paper


Following on from our previous research into the prehistoric aceramic distillation and production of birch bark tar, this series of exploratory experiments investigated the use of raised structures within a fire. These field-based experiments were conducted using sand, gravel, wood fuel, and bark from Betula pubescens (downy birch). The structures that were created were simple raised sand mounds, which reflected known Neanderthal combustion surfaces from the Middle Palaeolithic. The bulk of the experiments were recorded throughout using a thermocouple to provide temperature readings from the base of the bark pyrolysis chamber. The experiments proved successful at producing birch bark tar and several containers were used to catch the tar for later analysis. Based on the results, the authors contend that not only could Neanderthals control fire but that regular birch bark tar production by Neanderthals was most likely a result of specific chaînes opératoires in order to provide the necessary control and outcomes.


Middle palaeolithic Combustion surfaces Birch bark tar Experimental archaeology 



We thank Sharon Hartwell and Hanne Hongset for their help during the experiments.


  1. Aldeias V, Goldberg P, Sandgathe D, Berna F, Dibble HL, McPherron SP, Turq A, Rezek Z (2012) Evidence for Neandertal use of fire at Roc de Marsal (France). J Archaeol Sci 39(2012):2414–2423CrossRefGoogle Scholar
  2. Aveling EM, Heron C (1998) Identification of birch bark tar at the Mesolithic site of Star Carr. Anc Biomol 2:69–80Google Scholar
  3. Aveling EM, Heron C (1999) Chewing tar in the early Holocene. Antiquity 73(281):579–584CrossRefGoogle Scholar
  4. Bosquet D, Regert M, Dubois N, Jadin I (2001) Identification de brai de bouleau sur quatre vases du site rubané de Fexhe-le-Haut-Locher “Podrî l Cortri”. Premiers résultats. Notae Praehistoricae 21:119–127Google Scholar
  5. Charters S, Evershed RP, Goad LJ, Heron C, Blinkhorn P (1993) Identification of an adhesive used to repair a Roman jar. Archaeometry 35(1):91–101CrossRefGoogle Scholar
  6. Courty M-A, Carbonnell E, Poch JV, Banerjee R (2012) Microstratigraphic and multi-analytical evidence for advanced Neanderthal pyrotechnology at Abric Romani (Capellades, Spain). Quat Int 247:294–312CrossRefGoogle Scholar
  7. Czarnowski E, Neubauer D (1992) Aspekte zu Produktion and Verarbeitung von Birkenpech. Acta Praehist Archaeol 23:11–13Google Scholar
  8. Gosselain, O.P. 1992. Bonfire of the enquiries. Pottery firing temperatures in archaeology: what for? Journal of Archaeological Science 19.Google Scholar
  9. Groom P, Schenck T, Pedersen G (2015) Experimental explorations into the aceramic dry distillation of Betula pubescens (downy birch) bark tar. Archaeol Anthropol Sci 7:47–58CrossRefGoogle Scholar
  10. Grünberg JM (2002) Middle Palaeolithic birch-bark pitch. Antiquity 66:15–16CrossRefGoogle Scholar
  11. Henderson J (2000) The science and archaeology of materials. An investigation of inorganic materials. Routledge, LondonGoogle Scholar
  12. Koller J, Baumer U, Mania D (2001) High-tech in the Middle Palaeolithic: Neanderthal-manufactured pitch identified. Eur J Archaeol 4(3):385–397CrossRefGoogle Scholar
  13. Lyford CA (1943) Ojibwa crafts. Bureau of Indian Affairs, Lawrence, KansasGoogle Scholar
  14. Mallol C, Hernández CM, Cabanes D, Machado J, Sistiaga A, Pérez L, Galván B (2013a) Human actions performed on simple combustion structures: an experimental approach to the study of Middle Palaeolithic fire. Quat Int 2013:1–13Google Scholar
  15. Mallol C, Hernández CM, Cabanes D, Sistiaga A, Machado J, Rodríguez Á, Pérez L, Galván B (2013b) The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications. J Archaeol Sci 40(2013):2515–2537CrossRefGoogle Scholar
  16. Mazza PPA, Martini F, Sala B, Magi M, Colombini MP, Giachi G, Landucci F, Lemorini C, Modugno F, Ribechini E (2006) A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. J Archaeol Sci 33(9):1310–1318CrossRefGoogle Scholar
  17. Meijer R, Pomstra D (2011) The production of birch pitch with hunter-gatherer technology: a possibility. Experimentelle Archäeologie in Europa, Bilanz 2011. Oldenburg, Europäische Vereinigung zur Förderung der Experimentellen Archäologie e.V., Heft 10, 199–204Google Scholar
  18. Mentzer SM (2012) Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. Journal of Archaeological Method and Theory:1–53Google Scholar
  19. Osipowicz G (2005) A method of wood tar production, without the use of ceramics. euroREA 2:11-17Google Scholar
  20. Palmer F (2007) Die Entstehung von Birkenpech in einer Feuerstelle unter paläolithischen Bedingungen. Mitteilungen der Gesellschaft für Urgeschichte. 16:75–83Google Scholar
  21. Pawlik AF (2004) Identification of hafting traces and residues by scanning electron microscopy and energy-dispersive analysis of X-rays. In: Walker EA, Wenban-Smith F, Healy F (eds) Lithics in action: papers from the conference lithic studies in the year 2000. Oxbow, OxfordGoogle Scholar
  22. Pawlik AF, Thissen J (2011a) Hafted armatures and multi-component tool design at the Micoquian site of Inden-Altdorf, Germany. J Archaeol Sci 38(2011):1699–1708CrossRefGoogle Scholar
  23. Pawlik AF, Thissen J (2011b) The ‘Palaeolithic Prospection in the Inde Valley’ Project. Quaternary Science Journal (EuG) 60(1):66–77Google Scholar
  24. Piotrowski, W. 1999. Wood-tar and pitch experiments at Biskupin Museum. In Experiment and design. Archaeological studies in honour of John Coles, edited by A F Harding, Oxford: Oxbow Books.Google Scholar
  25. Pollard AM, Heron C (2008) Archaeological chemistry. Royal Society of Chemistry, CambridgeGoogle Scholar
  26. Preece RC, Gowlett JAJ, Parfitt SA, Bridgland DR, Lewis SG (2006) Humans in the Hoxnian: habitat, context and fire use at Beeches Pit, West Stow, Suffolk, UK. Journal of Quaternary Science. 21(5):485–496CrossRefGoogle Scholar
  27. Regert M, Vacher S, Moulherat C, Decavallas O (2003) Adhesive production and pottery function during the Iron Age at the site of Grand Aunay (Sarthe, France). Archaeometry 45(1):101–120. doi: 10.1111/1475-4754.00098 CrossRefGoogle Scholar
  28. Roebroeks W, Villa P (2011) On the earliest evidence for habitual use of fire in Europe. Proc Natl Acad Sci U S A 108:5209–5214CrossRefGoogle Scholar
  29. Sauter F, Graf A, Hametner C, Fröhlich J, Neugebauer JW, Preinfalk F (2002) Analysis of an organic agglutinant used to fix Iron-Age clay figurines to their base. ARKIVOC 2002:35–39Google Scholar
  30. Schenck, T. 2011. Experimenting with the unknown. In Experimental archaeology. Between Enlightenment and experience, edited by B Petersson, and L E Narmo, Lund: Lund University.Google Scholar
  31. Urem-Kotsou D, Stern B, Heron C, Kotsakis K (2002) Birch-bark tar at Neolithic Makriyalos, Greece. Antiquity 76(294):962–967CrossRefGoogle Scholar
  32. Vallverdú J, Alonso S, Bargalló A, Bartrolí R, Campeny G, Carrancho Á, Expósito I, Fontanals M, Gabucio J, Gómez B, Prats JM, Sañudo P, Solé À, Vilalta J, Carbonell E (2012) Combustion structures of archaeological level O and Mousterian activity areas with use of fire at the Abric Romaní rockshelter (NE Iberian Peninsula). Quat Int 247:313–324CrossRefGoogle Scholar
  33. Vreugdenhil, B.J., Zwart, R.W.R. 2009. Tar formation in pyrolysis and gasification. Energy Research Centre of the Netherlands, ECN-E-08-087, pp 324–335 Google Scholar
  34. Wadley L (2010) Compound-adhesive manufacture as a behavioural proxy for complex cognition in the Middle Stone Age. Curr Anthropol 51(S1):111–119CrossRefGoogle Scholar
  35. Weiner J (2005) Another word on pitch. Some comments on a “Sticky Issue” from Old Europe. Bulletin of Primitive Technology 29, Berlin, p 2027Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.The Mesolithic Resource Group

Personalised recommendations