Archaeological and Anthropological Sciences

, Volume 9, Issue 6, pp 1153–1168 | Cite as

New evidence of bones used as fuel in the Gravettian level at Coímbre cave, northern Iberian Peninsula

  • José Yravedra
  • David Álvarez-Alonso
  • Verónica Estaca-Gómez
  • Pablo López-Cisneros
  • Álvaro Arrizabalaga
  • Mikelo Elorza
  • Ma. José Iriarte
  • Jesús F. Jordá Pardo
  • Carmen Sesé
  • Paloma Uzquiano
Original Paper


The use of bone as fuel has been already documented in some sites dated to the Middle and Upper Palaeolithic. They contribute to a longer combustion time due to their durability; consequently, they are useful to reduce the need for firewood, a good advantage in open palaeoenvironmental contexts with limited arboreal vegetation. The use of bones as fuel can be identified by several lines of evidence. The main one is a large number of burned bones, with an intense cremation–charring or calcination, together with high fragmentation resulting from the long contact with the fire. Other features may be present, although they can also result from individual circumstances. They include either the presence of complete skeletal profiles–which implies using all the bones of the animal–or a selection of the anatomical parts which contribute better to combustion, i.e. epiphyses and axial elements. In this article, we argue that the faunal assemblage of level Co.B.6 of Coímbre cave fully corresponds to this model. Moreover, this level coincides with a cold palaeoclimatic event, which was correlative to the climatic deterioration that occurred at the end of MIS 3, and an open environment. Thus, we propose that this level contains the first known use of bones as fuel in the Cantabrian Gravettian.


Cantabrian region MIS 3 Firewood availability Bone as fuel Coímbre cave Gravettian 



This research was part of Project “Paleoecología y Poblamiento en la Cuenca Media del Río Cares durante el Pleistoceno Superior: La Cueva de Coímbre (Alles, Peñamellera Alta)”, regulated by the Dirección de Patrimonio Cultural de la Consejería de Cultura of the Principado de Asturias and founded by the Research Group “Investigación de Alto Rendimiento de Prehistoria de la Universidad del País Vasco (IT-288-07)” and the project HAR2008-3976/HIST of the Ministerio de Educación for the 2008 season, “the Sociedad de Ciencias de Aranzadi” in 2009 and the M. Cristina Masaveu Peterson Foundation in the 2010–2012 fieldworks. We would like to thank the Ayuntamiento of Peñamellera Alta for their help in the archaeological works and also to the Speleological Group “l’Espertuyu Cavernícola” for their help in the different works and logistic organization. We appreciate the collaboration of M. de Andrés-Herrero, A. Calvo, J. Rojo, O. Fuente, M. A. Valles, N. García, R. Obeso, P. Obeso, D. Rueda and J. Santa Eugenia as well as, and the different students at the laboratory of the UNED and Universidad Complutense. We want to thank Aixa Vidal for the translation of the manuscript and Lucía Cobo for the end revision. This article was written in memory of our good friend Alberto Gómez Castanedo.


  1. Altuna J, Marizezcurrena K (2013) Estudio de los macromamíferos del yacimiento de Aitzbitarte III (Excavación de la entrada). In: Altuna J, Mariezkurrena K, Ríos J (eds) Ocupaciones humanas en Aitzbitarte III (País Vasco) 33600–18400 BP (Zonade entrada a la cueva). EKOB 5. Euskal Kultura Ondare Bilfuna. Colección de Patrimonio Cultual Vasco, pp. 395–480Google Scholar
  2. Álvarez-Alonso D, Yravedra J, Arrizabalaga A, Jordá Pardo JF, Heredia N (2009) La cueva de Coímbre (Peñamellera Alta, Asturias, España) su yacimiento arqueológico y su santuario rupestre. Un estado de la cuestión en 2008. Munibe 60:139–155Google Scholar
  3. Álvarez-Alonso D, Arrizabalaga A, JF JP, Yravedra J (2011) La secuencia estratigráfica magdaleniense de la cueva de Coímbre (Peñamellera Alta, Asturias, España). Férvedes 7:57–64Google Scholar
  4. Álvarez-Alonso D, Yravedra J, Arrizabalaga A, Jordá Pardo JF (2013) Excavaciones arqueológicas en la cueva de Coímbre (Besnes, Peñamellera Alta). Campañas (2008-2012). Excavaciones Arqueológicas en Asturias 2007-2012:109–120Google Scholar
  5. Álvarez-Alonso D, Yravedra J, Arrizabalaga A, Jordá Pardo JF (2015) The Magdalenian sequence at Coímbre cave (Asturias, Northern Iberian Peninsule). Adaptative strategies of hunter-gatherer groups in montane environments. Quaternary International. doi: 10.1016/j.quaint.2015.09.084 Google Scholar
  6. Barba R, Domínguez-Rodrigo M (2005) The taphonomic relevance of the analysis of bovid long limb bone shaft features and their application to element identification. Study of bone thickness and morphology of the medullar cavity. J Taphonomy 3:29–42Google Scholar
  7. Bennett JL (1999) Thermal alteration of buried bone. J Archaeol Sci 26:1–8CrossRefGoogle Scholar
  8. Binford LR (1981) Bones ancient men, modern myths. Academic Press, New YorkGoogle Scholar
  9. Blumenschine R (1986) Early hominid scavenging opportunities. Implications of carcass availability in the Serengeti and Ngrongoro ecosystems, B.A.R. International Series, vol 283. Archaeopress, OxfordGoogle Scholar
  10. Blumenschine R (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci 15:483–502CrossRefGoogle Scholar
  11. Blumenschine R (1995) Percussion marks, tooth marks and the experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51CrossRefGoogle Scholar
  12. Blumenschine R, Selvaggio MM (1988) Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333:763–765CrossRefGoogle Scholar
  13. Bombail C (1987) Les structures de combustion des niveaux aurignaciers du flageolet I. Université de Neuchâtel, Mémoire de MaitriseGoogle Scholar
  14. Bon F, Gambier D, Ferrier C, Gardere P (1998) Gisement de Brassempouy (Landes) les recherches de 1995 à 1997, bilan et perspectives, vol 449, pp. 203–222Google Scholar
  15. Brain CK (1969) The contribution of Namib Desert Hottentot to understanding of Australopithecus bone accumulations. Sci Pap Namibian Desert Res Station 32:1–11Google Scholar
  16. Buikstra JE, Swegl M (1989) Bone modifiations due to burning experimental evidence. In: Bonnichsen R, MH S (eds) Bone modification. University of Marine, Institute for Quaternary Studies, Center for the Study of the First Americans, Orono, pp. 247–258Google Scholar
  17. Bunn HT (1982) Meat-eating and human evolution studies on the diet and subsistence patterns of Plio-Pleistocene hominins in East Africa. Ph.D. thesis, Dissertation. University of California, BerkeleyGoogle Scholar
  18. Cain CR (2005) Using burned animal bone to look at Middle Stone Age occupation and behavior. J Archaeol Sci 32:873–884CrossRefGoogle Scholar
  19. Castel CC (1999) Comportements de subsistance au Solutréen et au Badegoulien d’après les faunes de Combe-Saunière (Dordogne) et du Cuzoul de Vers. Lot. Ph.D. thesis, Dissertation, University of Bordeaux IGoogle Scholar
  20. Champagne F, Espitalié R (1981) Le Piage, site préhistorique du lot. Mémoire Société Préhistorique Française 15 288 pagesGoogle Scholar
  21. Chase PG (1999) Bison in the context of compplex utilization of faunal resources: a preliminary report on the Mousterian zooarchaeology of La Quina (France). In: Brugal JP, David F, Enloe JF, Jaubert J (eds) Le Bison gibier et moyen de subsistance des hommes du Paléolithique aux Paléoindiens des grandes plaines. Actes du Colloque international, Toulouse(1995, Antibes) APCDA. 159–184Google Scholar
  22. Clattenburg G (1975) Thermal properties of cancellous bone. J Biomed Matter Res 9:169–182CrossRefGoogle Scholar
  23. Costamagno S (1999a) Strategies de chasse et fonction des sites au Magdalenian dans le Sud de la France. Ph.D. thesis, Dissertation. University of BordeauxGoogle Scholar
  24. Costamagno S (2000) Stratégies d’approvisionnement et traitement des carcasses au Magdalénien: l’exemple de Moulin-Neuf Gironde. Paleo 12:77–95Google Scholar
  25. Costamagno S, Griggo C, Mourre V (1999) Approche expérimentale d’un problème taphonomique: utilisation de combustible osseux au Paléolithique. Préhistoire Européenne 13:167–194Google Scholar
  26. Costamagno S, Théry-Parisot I, Brugal JP, Guibert R (2005) Taphonomic consequences of use of bones as fuel. experimental data and archaeological application. In: O’connor T (ed) Biosphere to lithosphere, Proceedings of the9th Conference of the International Council of Archaeozoology. Oxbow Books, Oxford, pp. 51–62Google Scholar
  27. Costamagno S, Théry-Parisot I, JC C, JP B (2009) Combustible ou non? Analyse multifactorielle et modèles explicatifs sur des ossements brûlées paléolithiques. In: Théry-Parisot I, Henry A (eds) Gestion des combustibles au Paléolithique et au Mésolithique: nouveaux outils, nouvelles interprétations. UISPP, XV congress (Lisbon, 4–9 Septembre (2006)., BAR International Series 1914, vol 135. Archaeopress, Oxford, pp. 65–84Google Scholar
  28. Costamagno S, Théry-Parisot I, Kuntz, D, Bon F, Mensan R. (2010). Impact taphonomique d’une combustion prolongée sur des ossements utilisés comme combustible. P@lethnologie/2010.2 Google Scholar
  29. David B (1990) How was this bone burned? In: Solomon S, Davidson I, Watson D (eds) Problem solving in taphonomy, Tempus, vol 2, pp. 65–79Google Scholar
  30. Delpech F, Villa P (1993) Activites de chasse et boucherie dans la grotte des Eglises. In: Desse J, Audoin-Rouzeau F (eds) Exploitation des Animaux Sauvages a Travers le Temps. IV, Colloque International de l’Homme et l’Animal. Editions. APDCA, pp. 79–102Google Scholar
  31. Delporte H, Delibrias G, Delpech F, Donard E, Heim JL, Laville H, Marquet L, Mourer-Chauviré C, Paquereau MM, Tuffreau A (1984) Le grand abri de la Ferrassie. Fouilles 1968–1973. Vol. Mémoire 7. Laboratoire de Paléontologie Humaine et de Préhistoire, ParisGoogle Scholar
  32. Laloy J (1981) Recherche d’une me’thode pour l’exploitation des te’moins de combustion, vol 7. Cahiers du Centre de Recherches Pre’historiques, p. 167Google Scholar
  33. Lyman RL (1994) Relative abundance of skeletal specimens and taphonomic analysis of vertebrate remains. PALAIOS 9:288–298CrossRefGoogle Scholar
  34. Marquer L, Nespoulet R, Chiotti L (2010) A new approach to study the fuel used in hearths by hunter-gatherers at the Upper Palaeolithic site of Abri Pataud Dordogne, France. J Archaeol Sci 37:2735–2746CrossRefGoogle Scholar
  35. Martínez García E (1981) La Geología y el relieve de Asturias. Enciclopedia Temática Asturiana, Silverio Cañada Ed Gijón, pp. 57–124Google Scholar
  36. Morin E (2010) Taphonomic implications of the use of bone as fuel. In: Théry-Parisot I, Chabal L, Costamagno S (eds) The taphonomy of burned organic residues and combustion features in archaeological contexts, Proceedings of the round table May 27–29 2008, vol 2. P@lethnologie, Valbonne, pp. 209–217Google Scholar
  37. Moure JA, Gil G (1972) Noticia preliminar sobre los nuevos yacimientos de arte rupestre descubiertos en Peñamellera Alta (Asturias). Trab Prehist 29:245–254Google Scholar
  38. Nicholson RA (1994) A morphological investigation of burned animal bone and evolution of its utility in archaeology. J Archaeol Sci 20:411–428CrossRefGoogle Scholar
  39. Patou-Mathis M (1993) Etude taphonomique et paléoethnographique de la faune associé an une accumulation de Saint Cesaire. In: Leveque F, Backer AM, Guilband M (eds) Context of a late neanderthal, World Archaeology, vol 16, pp. 79–80Google Scholar
  40. Perlès C (1977) Préhistoire du feu. Masson, Paris, 179 ppGoogle Scholar
  41. Potts R, Shipman P (1981) Cut marks made by stone tools from Olduvai Gorge, Tanzania. Nature 291:577–580CrossRefGoogle Scholar
  42. Spennemann DHR, Colley S (1989) Fire in a pit) the effects of burning on faunal remains. Archaeozoologia 3:51–64Google Scholar
  43. Stiner MC, Khun SL, Weimer S, Bar Yosef O (1995) Differential burning, recrystalization, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237CrossRefGoogle Scholar
  44. Tavoso A (1987) Le remplissage de la grotte Tournal à Bize-Minervois (Aude). Cypsela VI 23-35Google Scholar
  45. Texier PJ, Brugal JP, Lemorini C, Wilson L (1998) Fonction d’un site du Paléolithique moyen en marge d’un territoire: l’abri de la Combette (Bonnieux, Vaucluse). In: JP B, Meignen L, Patou-Mathis M (eds) Economie préhistorique: les comportements de subsistance au Paléolithique. XVIII Rencontres Internationales d’Archéologie et d’Histoire d’Antibes) APCDACNRS, pp. 325–348Google Scholar
  46. Théry-Parisot I (1998) Economie du combustible et paleoecologique en contexte glaciaire et peroglaciaire, Paléolithique Moyen et Supérieur du Sud de la France (Anthracologie, expérimentation, taphonomie). PhD. thesis. Université de Paris I, Panthéon, SorbonneGoogle Scholar
  47. Théry-Parisot I (2001) Économie des combustibles au Paléolithique. Expérimentation, anthracologie, taphonomie, vol 20. CNRS Éditions Dossiers de documentation archéologique, Paris, p. 196 pGoogle Scholar
  48. Théry-Parisot I (2002) Fuel management bone and wood during the lower Aurignacian in the Pataud Rock Shelter Lower Palaeolithic, Les Eyzies de Tayac, Dordogne, France. Contribution of experimentation. J Archaeol Sci 29:1415–1421CrossRefGoogle Scholar
  49. Théry-Parisot I, Costamagno S (2005) Propriétés combustibles des ossements. Données expérimentales et réflexions archéologiques sur leur emploi dans les sites paléolithiques. Gallia Préhistoire 47:235–254CrossRefGoogle Scholar
  50. Théry-Parisot I, Costamagno S, Brugal JP, Fosse P, Guilbert R (2005) The use of bone as fuel during the palaeolithic, experimental study of bone combustible properties. In: Mulville J, Outram A (eds) Proceedings of Archaeozoology 9th ICAZ Conference, The zooarchaeology of milk and fats, pp. 50–59Google Scholar
  51. Uzquiano P, Yravedra J, Ruiz Zapata B, Gil MJ, Sese C, Baena J (2012) Human behaviour and adaptations to MIS 3 environmental trends (>53e30 kyrs BP) atEl Esquilleu cave (Cantabria, northern Spain). Quat Int 252:82–89CrossRefGoogle Scholar
  52. Villa P, Bon F, Castel JC (2002) Fuel, fire and fireplaces in the Palaeolithic of Western Europe. Rev Archaeol 23:33–42Google Scholar
  53. Weninger B, Jöris O (2004) Glacial radiocarbon calibration. The CalPal Program. In: Higham T, CB R, Owen C (eds) Radiocarbon and archaeology. Fourth international symposium, vol 62. Oxford University School of Archaeology Monograph, Oxford, pp. 9–15Google Scholar
  54. Yravedra J, Domínguez-Rodrigo M (2009) The shaft-based methodological approach to the quantification of long limb bones and its relevance to understanding hominid subsistence in the Pleistocene: application to four Palaeolithic sites. J Quat Sci 24:85–96CrossRefGoogle Scholar
  55. Yravedra J, Uzquiano P (2013) Burned bone assemblages from El Esquilleu cave (Cantabria, Northern Spain): deliberate use for fuel or systematic disposal of organic waste? Quat Sci Rev 68:175–190CrossRefGoogle Scholar
  56. Yravedra J, Baena J, Arrizabalaga A, Iriarte MJ (2005) El empleo de material óseo como combustible durante el Paleolítico medio y Superior en el Cantábrico. observaciones experimentales. In: Lasheras J, Montes R (eds) Neandertales cantábricos, Estado de la cuestión, Museo Nacional de Altamira, vol 20, pp. 369–383Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • José Yravedra
    • 1
  • David Álvarez-Alonso
    • 2
  • Verónica Estaca-Gómez
    • 1
  • Pablo López-Cisneros
    • 1
  • Álvaro Arrizabalaga
    • 3
  • Mikelo Elorza
    • 5
  • Ma. José Iriarte
    • 3
  • Jesús F. Jordá Pardo
    • 2
  • Carmen Sesé
    • 4
  • Paloma Uzquiano
    • 2
  1. 1.Department of PrehistoryComplutense UniversityMadridSpain
  2. 2.Department of PrehistoryUNED UniversityMadridSpain
  3. 3.Department of Geography Prehistory and ArchaeologyPais Vasco University UPV, EHULeioa, BizkaiaSpain
  4. 4.Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales, CSICMadridSpain
  5. 5.Sociedad de Ciencias Aranzadi, Alto de Zorroaga San SebastíanPaís VascoSpain

Personalised recommendations