Archaeological and Anthropological Sciences

, Volume 9, Issue 2, pp 265–278 | Cite as

Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain)

  • I. Esteban
  • R. M. AlbertEmail author
  • A. Eixea
  • J. Zilhão
  • V. Villaverde
Original Paper


Despite phytoliths having been used to understand past human use of plants and palaeoenvironment in Middle Paleolithic sites, little is known on this aspect in the well-documented central region of Mediterranean Iberia. This paper presents the first phytolith and mineralogical study conducted at Abrigo de la Quebrada (Chelva, Valencia). Forty-one samples were analyzed through phytoliths and Fourier transform infrared spectroscopy (FTIR) from different areas, stratigraphic levels, and archeological contexts (hearth, hearth-related, and non-hearth-related sediments) of the shelter. The results obtained point towards a different pattern of preservation in the site depending firstly on the stratigraphy and secondly on the area where the samples were collected. Postdepositional processes that may have chemically affected phytolith preservation are discussed. Grasses are the main plant component identified in all the samples while woody plants are scarce. The abundance of grasses in the non-hearth-related sediments might be related, at least partially, to the dispersion of ashes from hearths, as indicated by the FTIR results. The results are indicative of an occupation of the site during the spring-autumn season. At this time, the area would be dominated by a semi-open environment with supramediterranean vegetation.


Valencian region, Middle paleolithic palaeoenvironment Anthropogenic fire Vegetal resources Phytoliths 



Field work at Abrigo de la Quebrada was supported by Generalitat Valenciana (project PROMETEOII/2013/016). Laboratory work was supported by financial support from the Spanish Ministry of Science and Innovation (HAR2011-24878) and from the Catalan Government (2014-SGR0845). We are thankful to Dan Cabanes for his comments and discussion on the mineralogy.


  1. Albert RM (2007) Identificación de restos vegetales en las capas de cenizas de Cueva Bajondillo (Torremolinos, Málaga): Los estudios de fitolitos. Chapter XIV, Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga, CEDMA (Servicio de Publicaciones del Centro de Ediciones de la Diputación de Málaga), Málaga, pp 451–460Google Scholar
  2. Albert RM (2010) Hearths and plant uses during the Upper Paleolithic Period at Klissoura cave 1 (Greece): the results from phytolith analyses. Monograph of Klissoura Cave. Eurasian Prehistory 7(2):71–85Google Scholar
  3. Albert RM, Cabanes D (2007) Fire in prehistory: an experimental approach to combustion processes and phytolith remains. Isr J Earth Sci 56:175–189CrossRefGoogle Scholar
  4. Albert RM, Marean CW (2012) The exploitation of plant resources by early Homo sapiens: the phytolith record from Pinnacle Point 13B Cave, South Africa. Geoarchaeol 27:363–384CrossRefGoogle Scholar
  5. Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier JD, Coline F (eds) Phytoliths: applications in Earth sciences and human history. A.A. Balkema Publishers, Lisse, pp. 251–266Google Scholar
  6. Albert RM, Tsatskin A, Ronen A, Lavi O, Estroff L, Lev-Yadun S, Weiner S (1999) Mode of occupation of Tabun Cave, Mt Carmel Israel during the Mousterian period: a study of the sediments and the phytoliths. J Archaeol Sci 26:1249–1260CrossRefGoogle Scholar
  7. Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27:931–947CrossRefGoogle Scholar
  8. Albert RM, Bar-Yosef O, Meignen L, Weiner S (2003) Phytolith and mineralogical study of hearths from the Middle Palaeolithic levels of Hayonim Cave (Galilee, Israel). J Archaeol Sci 30:461–480CrossRefGoogle Scholar
  9. Albert RM, Esteve X, Portillo M, Rodríguez-Cintas A, Cabanes D Esteban I, Hernández F (2011). Phytolith CoRe, Phytolith Reference Collection. Retrieved Nov 11, 14, from:
  10. Allué E, Cabanes D, Solé A, Sala R (2012) Hearth functioning and forest resource exploitation based on the archaeobotanical assemblage from level J, In: Carbonell i Roura E (ed) High resolution archaeology and Neanderthal behavior. Time and space in level J of Abric Romaní (Capellades, Spain). Vertebrate Paleobiology and Paleoanthropology Series, Springer, pp 373–385Google Scholar
  11. Aparicio J (1981) Primeras dataciones C14 para el musteriense valenciano. Archivo de Prehistoria Levantina 16:2–38Google Scholar
  12. Arsuaga JL, Baquedano E, Pérez-González A (2006) Neanderthal and carnivores occupations in Pinilla del Valle sites (Community of Madrid). Proceeding of XV Congrés Union International des Sciences Prehistoriques et Protohistoriques UISPP, LisbonGoogle Scholar
  13. Arsuaga JL, Fernández Peris J, Gracia-Téllez A, Quam R, Carretero JM, Barciela González V, Blasco R, Cuartero F, Sañuso P (2012) Fossil human remains from Bolomor Cave (Valencia, Spain). J Hum Evol 62(5):629–639CrossRefGoogle Scholar
  14. Badal E (1984) Contribución al estudio de la vegetación prehistórica del sur de Valencia y Norte de Alicante a través del análisis antracológico. University of Valencia, Master thesis,Google Scholar
  15. Badal E, Villaverde V, Zilhão J (2012) Middle Paleolithic wood charcoal from three southern Iberian sites: biogeographic implications. Wood and charcoal. Evidence for human and natural history. Saguntum Extra 13:13–24Google Scholar
  16. Bamford MK, Albert RM, Cabanes D (2006) Assessment of the lowermost bed II Plio-Pleistocene vegetation in the eastern palaeolake margin of Olduvai Gorge (Tanzania) and preliminary results from fossil macroplant and phytolith remains. Quatern Int 148:95–112CrossRefGoogle Scholar
  17. Barboni D, Bremond L (2009) Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Rev Palaeobot Palynol 158(1–2):29–41CrossRefGoogle Scholar
  18. Berlin AM, Ball T, Thompson R, Herbert SC (2003) Ptolemaic agriculture. ‘Syrian wheat’ and Triticum aestivum. J Archaeol Sci 30:115–121Google Scholar
  19. Blasco R (2008) Human consumption of tortoises at level IV of Bolomor Cave (Valencia, Spain). J Archaeol Sci 35(10):2839–2848CrossRefGoogle Scholar
  20. Blasco R, Fernández Peris J (2009) Middle Pleistocene bird consumption at level XI of Bolomor Cave (Valencia, Spain). J Archaeol Sci 36(10):2213–2223CrossRefGoogle Scholar
  21. Blasco R, Fernández Peris J (2012) A uniquely broad spectrum diet during the Middle Pleistocene at Bolomor Cave (Valencia, Spain). Quatern Int 252:16–31CrossRefGoogle Scholar
  22. Blinnikov M, Busacca A, Whitlock C (2002) Reconstruction of the Late Pleistocene Columbia basin grassland, Washington, USA, based on phytolith records in Loess. Palaeogeogr Palaeoclimatol Palaeoecol 177:77–101CrossRefGoogle Scholar
  23. Bozarth SR (1992) Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. In: Rapp Jr G, Mulholland SC (eds) Phytolith systematics. Emerging Issues, Advances in Archaeological and Museum Science. Plenum Press, New York, pp. 193–214Google Scholar
  24. Bozarth SR (1993) Biosilicate assemblages of boreal forests and aspen parklands. In: Pearsall DM, Piperno DR (eds) Current research in phytolith analysis: applications in archaeology and paleoecology. University of Pennsylvania, Philadelphia, PA, MASCA Research Papers in Science and Archaeology, pp. 95–105Google Scholar
  25. Burch ES, Ellanna LJ (eds) (1994) Key issues in hunter-gatherer research. Berg Publicers, OxfordGoogle Scholar
  26. Cabanes D, Allué E, Vallverdú J, Cáceres I, Vaquero M, Pastó I (2007) Hearth structure and function at level J (50 kyr, BP) from Abric Romaní (Capellades, Spain): phytoliths, charcoal, bones and stone-tools. In: Madella M, Zurro D (eds) Plant, people and places—recent studies in phytolith analysis. Oxbow Books, Oxford, pp. 98–106Google Scholar
  27. Cabanes D, Mallol C, Expósito I, Baena J (2010) Phytolith evidence for hearths and beds in the Late Mousterian occupations of Esquilleu Cave (Cantabria, Spain). J Archaeol Sci 39:2697–2705CrossRefGoogle Scholar
  28. Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38(9):2480–2490CrossRefGoogle Scholar
  29. Couplan F (1983) In: Encyclopedie des Plantes Comestibles de l’Europe, In: La Cuisine Sauvage: Comment Accommoder Mille Plantes Oubliés, vol 2. Debard, ParisGoogle Scholar
  30. Daura J, Sanz M, García N, Allué E, Vaquero M, Fierro E, Carrión JS, López-García JM, Blain HA, Sánchez-Marco A, Valls C, Albert RM, Fornós JJ, Julià R, Fullola JM, Zilhão J (2013) Terrasses de la Riera dels Canyars (Gavà, Barcelona): the landscape of Heinrich stadial 4 north of the “Ebro frontier” and implications for modern human dispersal into Iberia. Quat Sci Rev 60:26–48CrossRefGoogle Scholar
  31. Eixea A, Villaverde V, Zilhão J (2011a) Aproximación al aprovisionamiento de materias primas líticas en el yacimiento del Paleolítico medio del Abrigo de la Quebrada (Chelva, Valencia). Trab Prehist 68:65–78CrossRefGoogle Scholar
  32. Eixea A, Villaverde V, Zilhão J, Sanchis A, Morales J, Real C, Bergadà M (2011b) El nivel IV del Abrigo de la Quebrada (Chelva, Valencia). Análisis microespacial y valoración del uso del espacio en los yacimientos del Paleolítico medio valenciano Mainake XXXIII:127–158Google Scholar
  33. Eixea A, Villaverde V, Zilhão J, Bergadà, M, Sanchis A, Morales J, Real C, Martínez JA (2012) Variation in the use of space through time at Abrigo de la Quebrada (Chelva, Valencia). The case of Middle Paleolithic levels IV and VII, In: García A, García J, Maximiano A, Rios J (eds.) Debating spatial archaeology: International workshop on landscape and spatial analysis in archaeology. Santander: 153–166.Google Scholar
  34. Eixea A, Villaverde V, Roldán C, Zilhão J (2014) Middle Palaeolithic flint procurement in central Mediterranean Iberia: implications for human mobility. J Lithic Stud 1(1):103–115CrossRefGoogle Scholar
  35. Elbaum R, Weiner S, Albert RM, Elbaum M (2003) Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. J Archaeol Sci 30:217–226CrossRefGoogle Scholar
  36. Fernández Peris J, Villaverde V (2001) El Paleolítico Medio: el tiempo de los Neandertales. Periodización y características. In: Villaverde V (ed) De neandertales a cromañones. El inicio del poblamiento humano en las tierras valencianas. Universidad de Valencia, Valencia, pp. 147–176Google Scholar
  37. Fox CL, Juan J, Albert RM (1996) Phytolith analysis on dental calculus, enamel surface, and burial soil: information about diet and paleoenvironment. Am J Phys Anthropol 101(1):101–113CrossRefGoogle Scholar
  38. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951CrossRefGoogle Scholar
  39. Fredlund GG, Tieszen LT (1994) Modern phytolith assemblages from the North American great plains. J Biogeogr 21:321–335CrossRefGoogle Scholar
  40. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; spy I and II, Belgium). Proc Natl Acad Sci U S A 108:486–491CrossRefGoogle Scholar
  41. Jochim MA (1976) Hunter-gatherer subsistence and settlement: a predictive model. Academic Press, New YorkGoogle Scholar
  42. Karkanas P, Rigaud JP, Simek JF, Albert RM, Weiner S (2002) Ash, bones and guano: a study of the minerals in the sediments of Grotte XVI (Dordogne, France). J Archaeol Sci 29(7):721–732CrossRefGoogle Scholar
  43. Katz O, Cabanes D, Weiner S, Maeir A, Boaretto E, Shahack-Gross R (2010) Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. J Archaeol Sci 37(7):1557–1563CrossRefGoogle Scholar
  44. Kerns B (2001) Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. Southwest Nat 46:282–294CrossRefGoogle Scholar
  45. Klasen N (2015) OSL dating of sediment samples from Spain by order of SFB 806, subproject C1 (series Quebrada). Unpublished reportGoogle Scholar
  46. Klein RL, Geis JW (1978) Biogenetic opal in the Pinaceae. Soil Sci 126:145–156CrossRefGoogle Scholar
  47. Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources in Amud Cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719CrossRefGoogle Scholar
  48. Madella M, Alexandre A, Ball TB (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260CrossRefGoogle Scholar
  49. Mallol C, Hernández CM, Cabanes D, Sistiaga A, Machado J, Rodríguez A, Pérez L, Galván B (2013) The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications. J Archaeol Sci 40(5):2515–2253CrossRefGoogle Scholar
  50. Mulholland SC, Rapp C Jr (1992) A morphological classification of grass silica-bodies, In: Rapp Jr G, Mulholland CS (eds) Phytolith systematics. Emerging Issues, Advances in Archaeological and Museum Science. Plenum Press, New York, pp 65–89Google Scholar
  51. Ollendorf AL (1992) Toward a classification scheme of sedge (Cyperaceae) phytoliths. In: Rapp Jr G, Mulholland SC (eds) Phytolith systematics. Emerging Issues, Advances in Archaeological and Museum Science. Plenum Press, New York, pp. 91–111Google Scholar
  52. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San DiegoGoogle Scholar
  53. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham, MDGoogle Scholar
  54. Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029CrossRefGoogle Scholar
  55. Rosen AM (1992) Preliminary identification of silica skeletons from near Eastern archaeological sites: an anatomical approach. In: Rapp Jr G, Mulholland SC (eds) Phytolith systematics. Emerging Issues, Advances in Archaeological and Museum Science. Plenum Press, New York, pp. 193–214Google Scholar
  56. Rosen AM (2003) Middle palaeolithic plant exploitation: the microbotanical evidence. In: Henry DO (ed) Neanderthals in the Levant. Behavioral organization and the beginnings of human modernity. Continuum, London, pp. 156–171Google Scholar
  57. Runge F, Runge J (1997) Opal phytoliths in East African plant and soils. In: Pinilla A, Juan-Tresserras J, Machado MJ (eds) The state of the art of phytoliths in plant and soils. CCMA-CSIC, Madrid, pp. 72–81Google Scholar
  58. Salazar-García DC, Power RC, Sanchis Serra A, Villaverde V, Walkere MJ, Henry AG (2013) Neanderthal diets in central and southeastern Mediterranean Iberia. Quatern Int 318:3–18CrossRefGoogle Scholar
  59. Sanchis Serra A, Morales Pérez JV, Real Margalef C, Eixea A, Zilhão J, Villaverde V (2013) Los conjuntos faunísticos del Paleolítico medio del Abrigo de la Quebrada (Chelva, Valencia): Problemática del estudio, metodología aplicada y síntesis de los primeros resultados. Animals i Arqueologia Hui 65Google Scholar
  60. Tappan H (1980) The paleobiology of plant protists. W. H, Freeman and Company, San Francisco, CAGoogle Scholar
  61. Tormo C, Guillem-Calatayud PM (2015) Los micromamíferos del yacimiento del Paleolítico medio del Abrigo de la Quebrada (Chelva, Valencia): niveles I-VIII. In: Pascual JL (ed) Sanchis A. Preses petites I grups humans en el Passat, Museu de Prehistòria de València, pp. 181–208Google Scholar
  62. Tsartsidou G, Lev-Yadun S, Albert RM, Miller-Rosen A, Efstratiou N, Weiner S (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34(8):1262–1275CrossRefGoogle Scholar
  63. Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp Jr G, Mulholland SC (eds) Phytolith systematics: emerging issues. Advances in Archaeological and Museum Science. Plenum Press, New York, pp. 113–128CrossRefGoogle Scholar
  64. Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am J 33:109–115CrossRefGoogle Scholar
  65. Villaverde V, Aura JE, Barton CM (1998) The Upper Paleolithic in Mediterranean Spain: a review of current evidence. J World Prehist 12:121–198CrossRefGoogle Scholar
  66. Villaverde V, Eixea A, Zilhão J (2008) Aproximación a la industria lítica del Abrigo de la Quebrada (Chelva, Valencia). Treballs d’Arqueologia 14:213–228Google Scholar
  67. Villaverde V, Eixea A, Rios J, Zilhão J (2012) Importancia y valoración de la producción microlevallois en los niveles II y III del Abrigo de la Quebrada (Chelva, Valencia). Zephyrus LXX:13–32Google Scholar
  68. Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller C (2011) Middle Stone age bedding construction and settlement patterns at Sibudu, South Africa. Science 334:1388–1391CrossRefGoogle Scholar
  69. Winterhalder B, Smith EA (1981) Hunter-gatherer foraging strategies. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ERAAUB. Dept. de Prehistoria, Historia Antiga i ArqueologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.ICREA (Catalan Institution for Research and Advanced Studies)BarcelonaSpain
  3. 3.Dept. de Prehistòria i ArqueologiaUniversitat de ValènciaValenciaSpain
  4. 4.SERP Dept. de Prehistòria, Historia Antiga i ArqueologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations