Skip to main content

Advertisement

Log in

Terrestrial and maritime taphonomy: differential effects on spatial distribution of a Late Pleistocene continental drowned faunal bone assemblage from the Pacific coast of Chile

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Site GNL Quintero 1 (GNLQ1), located on the central coast of Chile, is the only documented Late Pleistocene drowned terrestrial site along the Pacific Coast of South America. Faunal evidence at the site is varied, and so far, remains of the following taxa have been found: extinct Camelidae, Cervidae, Equidae, Mylodontidae, Xenarthra, but also Myocastoridae, Canidae and Octodontidae. Both geological and paleoenvironmental data indicate that GNLQ1 developed in a floodplain or low-energy environment during the Last Glacial Maximum (LGM). Prior to the post-glacial rising of the sea level, the site would have been located several kilometres inland as the paleoshoreline was farther out on the continental shelf. In accordance with this background, the present study addresses the analysis of the spatial distribution of the bone deposits of GNLQ1 by considering both scenarios, the terrestrial phase related to the formation and modification of the fossil assemblage prior to the transgression, and the marine phase, subsequent to inundation. Results indicate modifications related to low-energy flow environment and carnivore activity dominated during the terrestrial phase and the action of marine organisms during the marine phase. Other taphonomic modifications are not easily attributable to either one or the other environmental context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Correlation (r) between bone mineral density values (Elkin 1995) and cf. Palaeolama sp. %MAU.

References

  • Achyuthan H (2004) Paleopedology of ferricrete horizons around Chennai, Tamil Nadu, India. Rev Mex Cienc Geol 21(1):133–143

    Google Scholar 

  • Andrews P (1995) Time resolution in the Pasalar Miocene fauna. J Hum Evol 28:343–358

    Article  Google Scholar 

  • Behrensmeyer AK (1978) Taphonomic and ecological information from bone weathering. Paleobiology 4:150–162

    Google Scholar 

  • Behrensmeyer AK (1982) Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211–227

    Google Scholar 

  • Benito-Calvo A, de la Torre I (2011) Analysis of orientation patterns in Olduvai bed I assemblages using GIS techniques: implications for site formation processes. J Hum Evol 61:50–60

    Article  Google Scholar 

  • Binford LR (1981) Bones: ancient men and modern myths. Academic Press, New York

    Google Scholar 

  • Boessnecker R (2013) Taphonomic implications of barnacle encrusted sea lion bones from the Middle Pleistocene Port Orford Formation, coastal Oregon. J Paleo 87:657–663

    Article  Google Scholar 

  • Borrero LA, Martin F (1996) Tafonomía de carnívoros: un enfoque regional. In: Gómez Otero J (ed) Arqueología. Sólo Patagonia. CENPAT (CONICET), Puerto Madryn, pp. 189–206

    Google Scholar 

  • Borrero LA, Martin F, Vargas J (2005) Tafonomía de la interacción entre pumas y guanacos en el Parque Nacional Torres del Paine, Chile. Magallania 33(1):95–114

    Article  Google Scholar 

  • Borrego J, Monterde J, Morales JA, Carro B, López N (2003) Morfología de la pirita diagenética en sedimentos recientes de estuario del Río Odiel (SO de España). Geogaceta 33:99–101

    Google Scholar 

  • Bromage TG (1984) Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64:161–178

    Article  Google Scholar 

  • Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55:3–4

    Google Scholar 

  • Brown A, Ellis C, Roseff R (2010) Holocene sulphur-rich palaeochannel sediments: diagenetic conditions, magnetic properties and archaeological implications. J Archaeol Sci 37(1):21–29

    Article  Google Scholar 

  • Carabias D, Cartajena I, Simonetti R, López P, Morales C, Ortega C (2014) Submerged paleolandscapes: site GNL Quintero 1 (GNLQ1) and the first evidence from the Pacific coast of South America. In: Evans A, Flemming N, Flatman J (eds) Prehistoric archaeology of the continental shelf. A global review. Springer, New York, pp. 131–149

    Chapter  Google Scholar 

  • Cartajena I, López P, Carabias D, Morales C., Vargas G (2011) Arqueología subacuatica y tafonomía: recientes avances de sitios finipleistocénicos sumergidos en la Costa Pacífico de Chile Central. Revista Antípoda 13:201-225.

    Google Scholar 

  • Cartajena I, López P, Carabias D, Morales C, Vargas G, Ortega C (2013) First evidence of fan underwater Final Pleistocene terrestrial extinct faunal bone assemblage from central Chile (South America): taxonomic and taphonomic analyses. Quat Int 305:45–55

    Article  Google Scholar 

  • Cherkinsky A (2009) Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51:647–655

    Google Scholar 

  • Cherkinsky A, Trindade Dantas MA, Cozzuol MA (2013) Bioapatite 14C age of giant mammals from Brazil. Radiocarbon 55:454–471

    Google Scholar 

  • Cook E, Trueman C (2009) Taphonomy and geochemistry of a vertebrate microremains assemblage from the Early Triassic karst deposits at Czatkowice 1, southern Poland. Palaeontol Pol 65:17–30

    Google Scholar 

  • Dawson EY (1962) Marine red algae of Pacific Mexico. VII. Ceramiales: Ceramiaceae, Delesseriaceae. Allan Hancock Pacific Expedition 26:1–207

    Google Scholar 

  • Domínguez-Rodrigo M, Pickering TR, Mabulla A, Musiba C, Baquedano E, Ashley G, Diez-Martin F, Santonja M, Uribelarrea D, Barba R, Yravedra J, Barboni D, Arriaza C, Gidna A (2012) Autochthony and orientation patterns in Olduvai bed I: a re-examination of the status of post-depositional biasing of archaeological assemblages from FLK North (FLKN). J Archaeol Sci 39:2116–2127

    Article  Google Scholar 

  • Domínguez-Rodrigo M, García-Pérez A (2013) Testing accuray of different A-axis types for measuring the orientation of bones in the archaeological and paleontological record. PLoS One 2013 8(7):e68955. doi:10.1371/journal.pone.0068955

  • Dunbar J, Webb D, Cring D (1989) Culturally and naturally modified bones from a Paleoindian site in the Aucilla River, North Florida. In: Bonnichsen R, Sorg M (eds) Bone modifications. Center for the Study of the First Americans, Orono, pp. 473–497

    Google Scholar 

  • Elkin D (1995) Volume density of South American camelid skeletal parts. Int J Osteoarchaeol 5:29–37

    Article  Google Scholar 

  • Faith JT, Behrensmeyer AK (2006) Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. J Archaeol Sci 33:1718–1733

    Article  Google Scholar 

  • Fernández-Jalvo Y, Andrews P (2003) Experimental abrasión of water effects on bone fragments. J Taphonomy 1(3):147–163

    Google Scholar 

  • Fernández-Jalvo Y, Cáceres I (2010) Tafonomía e industria lítica: marcas de corte y materias primas. In: Mata Almonte E (coord) Cuaternario y Arqueología: Homenaje a Francisco Giles Pacheco, ASPHA, Cádiz, pp 277–290.

  • González A, Terrazas A, Stinnesbeck W, Stinnesbeck BM, Avilés J, Rojas C, Padilla JM, Velásquez A, Acevez E, Frey E (2013) The first human settlers on the Yucatán Peninsula: evidence from drowned caves in the state of Quintana Roo (South Mexico). In: Graf K, Ketron C, Waters M (eds) Paleomarican odyssey. Center for the Study of the First Americans, Orono, pp. 323–337

    Google Scholar 

  • Gutiérrez MA, Kaufmann C (2007) Criteria for the identification of formation processes in guanaco (Lama guanicoe) bone assemblages in fluvial-lacustrine environments. J Taphonomy 5(4):151–176

    Google Scholar 

  • Hanson C (1980) Fluvial taphonomic processes: models and experiments. In: Behrensmeyer AK, Hill AP (eds) Fossils in the making. University of Chicago Press, Chicago, pp. 156–181

    Google Scholar 

  • Henry D (2012) The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quat Int 247(9):246–266

    Article  Google Scholar 

  • Hill R (2006) Comparative anatomy and histology of xenarhran osteoderms. J Morphol 267:1441–1460

    Article  Google Scholar 

  • Hoffmann A, Decher J, Rovero F, Schaer J, Voigt C, Wibbelt G (2010) Field methods and techniques for monitoring mammals. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vanden Spiegel D (eds.) Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Abc Taxa 8(2):482-529.

  • Hogg A, Hua Q, Blackwell P, Niu M, Buck C, Guilderson T, Heaton T, Palmer J, Reimer P, Reimer R, Turney C, Zimmerman S (2013) SHCal13 southern hemisphere calibration, 0-50,000 years cal BP. Radiocarbon 55(4):1889–1903.

  • Hoyle BG, Fisher DC, Borns HW, Churchill-Dickson LL, Dorion CC, Weddle T (2004) Late Pleistocene mammoth remains from coastal Maine, U.S.A. Quat Res 61:277–288

    Article  Google Scholar 

  • Kaufmann C, Gutiérrez M (2004) Dispersión potencial de huesos de guanaco en medios fluviales y lacustres. In: Martínez G, Gutiérrez M, Curtoni R, Berón M, Madrid P (eds) Aproximaciones contemporáneas a la arqueología pampeana, perspectivas teóricas, metodológicas, analíticas y casos de estudio. Facultad de Ciencias Sociales (UNCPBA), Olavaria, pp. 129–146

    Google Scholar 

  • Kidwell SM (1985) Palaeobiological and sedimentological implications of fossil concentrations. Nature 318:457–459

    Article  Google Scholar 

  • Kidwell SM (1998) Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 39:977–995

    Google Scholar 

  • Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  Google Scholar 

  • Leonard-Pingel JS (2005) Molluscan taphonomy as a proxy for recognizing fossil seagrass beds. Louisiana State University, Master’s thesis.

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lyman RL (2010) What taphonomy is, what it isn’t, and why taphonomists should care about the difference. J Taphonomy 8(1):1–16

    Google Scholar 

  • López P (2007) Tafonomía de los mamíferos extintos del pleistoceno tardío de la costa meridional del semiárido de Chile (IV Región-32° Latitude S). Alcances culturales y paleoecológicos. Chungara 39(1):69–86

    Google Scholar 

  • López P, Cartajena I, Olivares G, López O, Carabias D, Morales C (2012) Aplicación de Microscopio Electrónico de Barrido (MEB) y Espectroscopia de Energía Dispersiva (EDS) para distinguir alteraciones térmicas en restos osteofaunísticos de un sitio sumergido del Pleistoceno final de la costa de Chile central. In: Acosta A, Loponte D, Mucciolo L (eds) Temas de Arqueología, Estudios Tafonómicos y Zooarqueológicos (II). Instituto Nacional de Antropología y Pensamiento Latinoamericano, pp 25–44.

  • Madgwick R (2014) What makes bones shiny? Investigating trampling as a cause of bone abrasion. Archaeol Anthropol Sci 6:163–173

    Article  Google Scholar 

  • Marean CW, Spencer LM (1991) Impact of carnivore ravaging on zooarchaeological measures of element abundance. Am Antiqu 56:645–658

    Article  Google Scholar 

  • Martin F (2013) Tafonomía y paleoecología de la transición Pleistoceno-Holoceno en Fuego-Patagonia. Ediciones de la Universidad de Magallanes, Punta Arenas

    Google Scholar 

  • Meldahl K, Flessa K (1990) Taphonomic pathways and comparative biofacies and taphofacies in a recent intertidal/shallow shelf environment. Lethaia 23:43–60

    Article  Google Scholar 

  • Méndez C (2011) Tecnología lítica en poblamiento Pleistoceno terminal del centro de Chile. Organización, gestos y saberes. Universidad Católica del Norte, PhD Thesis.

  • Meintanis S, Iliopoulos G (2003) Tests of fit for the Rayleigh distribution based on the empirical Laplace transformation. Ann Inst Statist Math 55(1):137–151

    Google Scholar 

  • Núñez L, Varela J, Casamiquela R, Villagrán C (1994) Reconstrucción Multidisciplinaria de la ocupación prehistórica de Quereo, Centro de Chile. Lat Am Antiq 5(2):99–118

    Article  Google Scholar 

  • Osorio C (2002) Moluscos marinos en Chile. Especies de importancia económica. Editorial Salesianos, Santiago

    Google Scholar 

  • Paskoff R (1970) Le Chili semi-aride, recherches géo-morphologiques. Biscaye Fréres, Bordeaux

    Google Scholar 

  • Petraglia M, Potts R (1994) Water flow and the formation of early Pleistocene artifact sites in Olduvai Gorge, Tanzania. J Anthropol Archaeol 13:228–254

    Article  Google Scholar 

  • Polo García ME, Felicísimo AM (2008) Propuesta de metodología para el análisis del error de posición en bases de datos espaciales mediante estadística circular y mapas de densidad. GeoFocus 8:281–296

    Google Scholar 

  • Saillard M (2008) Dynamique du soulèvement côtier Pléistocène des Andes centrales: étude de l’évolution géomorphologique et datations (10Be) de séquences de terrasses marines (Sud Pérou-Nord Chili). Université de Toulouse, Ph.D thesis.

  • Saillard M, Hall SR, Audin L, Farber DL, Hérail G, Martinod J, Regard V, Finkel RC, Bondoux F (2009) Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31° S) inferred from 10Be dating. Earth Planet Sci Lett 277(1–2): doi:10.1016/j.epsl.2008.09.039.

  • Saillard M, Riotte J, Regard V, Violette A, Hérail G, Audin L, Riquelme R (2012) Beach ridges U-Th dating in Tongoy Bay and tectonic implications for a peninsulabay system, Chile. J S Am Earth Sci 40:77–84

    Article  Google Scholar 

  • Spada G, Stocchi P (2007) SELEN: a Fortran 90 program for solving the «sea-level equation». Comput Geosci 33(4):538–562

    Article  Google Scholar 

  • Stewart D (1999) Formation processes affecting submerged archaeological sites: an overview. Geoarchaeology 14(6):565–587

    Article  Google Scholar 

  • Stright M (1995) Archaic period sites on the continental shelf of North America: the effect of relative sea-level changes on archaeological site locations and preservation. In: Bettis A (ed) Archaeological geology of the Archaic period in North America. Geological Society of America Special Paper 297, Colorado, pp. 131–147

    Chapter  Google Scholar 

  • Tappen M (1995) Savanna ecology and natural bone deposition. Curr Anthropol 36:223–260

    Article  Google Scholar 

  • Tappen M, Adler DS, Ferring CR, Gabunia M, Vekua A, Swisher CC (2002) Akhalkalaki the taphonomy of an Early Pleistocene locality in the Republic of Georgia. J Archaeol Sci 29:1367–1391

    Article  Google Scholar 

  • Villa-Martínez R, Villagrán C (1997) Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Rev Chil Hist Nat 70:391–401

    Google Scholar 

  • Voorhies M (1969) Taphonomy and population dynamics of an Early Pliocene vertebrate fauna, Knox County, Nebraska. University of Wyoming Contribution to Geology Special Paper 1:1–69.

  • Waguespack NM (2002) Caribou sharing and storage: refitting the Palangana site. J Anthropol Archaeol 21:396–417

    Article  Google Scholar 

  • Zar J (1984) Biostatistical analysis, Second edn. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Zazzo A, Saliège JF (2011) Radiocarbon dating of biological apatites: a review. Palaeogeogr Palaeoclimatol Palaeoecol 310:52–61

    Article  Google Scholar 

Download references

Acknowledgments

This study has benefited from the financial support of GNL Quintero S.A. The authors would like to thank the editors and two anonymous reviewers of an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, P., Cartajena, I., Carabias, D. et al. Terrestrial and maritime taphonomy: differential effects on spatial distribution of a Late Pleistocene continental drowned faunal bone assemblage from the Pacific coast of Chile. Archaeol Anthropol Sci 8, 277–290 (2016). https://doi.org/10.1007/s12520-015-0275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-015-0275-y

Keywords

Navigation