A spotted hyaena den in the Middle Palaeolithic of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy)

  • Jacopo Crezzini
  • Paolo Boscato
  • Stefano Ricci
  • Annamaria Ronchitelli
  • Vincenzo Spagnolo
  • Francesco Boschin
Original Paper


The Palaeolithic sequence of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy) is one of the most important in the Mediterranean area: It comprises the whole Upper Palaeolithic cultural sequence known for the region, as well as Early Middle Palaeolithic and Lower Palaeolithic levels. These earlier phases are best represented in a collapsed room located outside the present-day cave (the so called “external rock shelter”). In this area, a new excavation, started in 2004, brought to light Middle Palaeolithic animal remains associated with evidence of spotted hyaena (SU 64 and 53). The spatial distribution analysis of remains from SU 53 revealed the presence of a bone accumulation area and a wider dispersal of hyaena coprolites. Three main ungulate species (aurochs, fallow deer and red deer) as well as carnivores (spotted hyaena, wolf, fox, wild cat and lynx) and lagomorphs have been identified. The majority of aurochs remains are located in the main accumulation; among these specimens, a complete metatarsal connected with three tarsal bones has been found; a talus and a complete tibia, probably belonging to the same limb, have also been identified. The multidisciplinary study carried out in this paper highlights a specific bone accumulation and scattering pattern in a spotted hyaena (Crocuta crocuta) den. In addition, taphonomy of lagomorph remains indicates the presence of other depositional agents.


Hyaena den Taphonomy GIS Spatial analysis Grotta Paglicci Middle Palaeolithic 



We thank the Soprintendenza per i Beni Archeologici della Puglia for supporting research at Grotta Paglicci. We are also grateful to the reviewers for editing and improving the original manuscript and to Lee G. Broderick and Richard Madgwick, the organisers of Session 4 of the 12th International Conference of Archaeozoology (San Rafael, Mendoza, Argentina, September 22nd to 27th, 2014), where this research was originally presented.

Author contributions

J.C., F.B. and P.B. designed research; J.C., F.B. and P.B. performed taphonomy and zooarchaeological research; A.R., S.R. and V.S. analysed excavation data; V.S. performed spatial distribution analysis; J.C., F.B., P.B., A.R. and V.S. wrote the paper.


  1. Arribas A, Palmqvist P (1998) Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the Lower Pleistocene site at Venta Micena (Orce, Guadix-Baza, Granada, Spain). Geobios 31(3, supplément):3–47CrossRefGoogle Scholar
  2. Arrizabalaga A, Altuna J (2000) Labeko Koba (paìs Vasco). hyaenas y humanos en los albores del Paleolìtico superior. Munibe 52:107–181Google Scholar
  3. Binford LR (1978) Nunamiut ethnoarchaeology. Academic Press, New YorkGoogle Scholar
  4. Binford LR (1981) Bones: ancient men and modern myths. Academic Press, New YorkGoogle Scholar
  5. Binford LR (1984) Faunal remains from Klasies River Mouth. Academic Press, OrlandoGoogle Scholar
  6. Binford LR, Mills MGL, Stone NM (1988) Hyaena scavenging behavior and its implications for the interpretation of faunal assemblages from FLK 22 (the Zinj Floor) at Olduvai Gorge. J Anthropol Archaeol 7:99–135CrossRefGoogle Scholar
  7. Boaz NT, Ciochon RL, Xu Q, Liu J (2000) Large mammalian carnivores as a taphonomic factor in the bone accumulation at Zhoukoudian. Acta Anthropologica Sin 19(suppl):224–234Google Scholar
  8. Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B (2005) Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J Hum Evol 49:71–87CrossRefGoogle Scholar
  9. Bonfiglio L, Mangano G, Marra AC, Masini F (2001) A new late Pleistocene vertebrate faunal complex from Sicily (S. Teodoro Cave, north-eastern Sicily, Italy). Boll Soc Paleontol Ital 40:149–158Google Scholar
  10. Boscato P (1994) Grotta Paglicci: la fauna a grandi mammiferi degli strati 22-24 (Gravettiano antico – Aurignaziano). Rivista di Scienze Preistoriche XLVI:145–176Google Scholar
  11. Boscato P (2001) Le faune dello strato 1 dell’area esterna di Paglicci (Rignano Garganico – Fg). In: Gravina A (ed) Atti 21° Convegno Nazionale sulla Preistoria, Protostoria, Storia della Daunia (San Severo, 24-26 Nov. 2000), Archeoclub d’Italia sede di San Severo, San Severo, pp 43–56Google Scholar
  12. Boscato P, Crezzini J (2005) L’uomo e la iena macchiata. Tafonomia su resti di ungulati del Gravettiano antico di Grotta Paglicci (Rignano Garganico – FG). In: Malerba G, Visentini P (eds) Atrti del 4° Convegno Nazionale di Archeozoologia, vol 6, Quaderni del Museo Archeologico del Friuli Occidentale., pp 67–74Google Scholar
  13. Boscato P, Crezzini J (2012) Middle-Upper Palaeolithic transition in Southern Italy: Uluzzian macromammals from Grotta del Cavallo (Apulia). Quat Int 252:90–98CrossRefGoogle Scholar
  14. Boscato P, Palma di Cesnola A (2000) Nuovi ritrovamenti di Epigravettiano Antico “Iniziale” a Grotta Paglicci (Rignano Garganico, Foggia). Società per la Preistoria e la Protostoria della Regione Friuli-Venezia Giulia, Quaderno 8:45–60Google Scholar
  15. Boscato P, Ronchitelli A (2006) La serie esterna di Paglicci. Gli scavi 2004-2005. In: Gravina A (ed) 26° Convegno sulla Preistoria – Protostoria della Daunia. San Severo 2005, Archeoclub d'Italia sede di San Severo, San Severo pp 3--16Google Scholar
  16. Boydston EE, Kapheim KM, Van Horn RC, Smale L, Holekamp KE (2005) Sexually dimorphic patterns of space use throughout ontogeny in the spotted hyaena (Crocuta crocuta). J Zool 267:271–281CrossRefGoogle Scholar
  17. Boydston EE, Kapheim KM, Holekamp KE (2006) Patterns of den occupation by the spotted hyaena (Crocuta crocuta). Afr J Ecol 44:77–86CrossRefGoogle Scholar
  18. Brugal JP, Jaubert J (1991) Les gisements paléontologiques Pleistocènes à indices de fréquentation humaine: un nouveau type de comportement de prédation? Paléo 3:15–41CrossRefGoogle Scholar
  19. Clot J, Duranthon F (1990) Les Mammifères Fossiles du Quaternaire dans le Pyrénées. Museum d’Histoire naturelle de Toulouse, ToulouseGoogle Scholar
  20. Connolly J, Lake M (2006) Geographical information system in archaeology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Conti N, Coppola D, Petronio C, Petrucci P, Sardella R, Salari L (2012) La fauna del Pleistocene superiore di Tana delle Iene (Ceglie Messapica, Brindisi, Italia meridionale). In: Bollettino del Museo Civico di Storia Naturale, Verona, vol 36, Geologia Paleontologia Preistoria., pp 63–76Google Scholar
  22. Cruz-Uribe K (1991) Distinguishing hyaena from hominid bone accumulations. J Field Archeol 18:467–486Google Scholar
  23. Diedrich CG (2010) Specialized horse killers in Europe: Foetal horse remains in the Late Pleistocene Srbsko Chlum-Komín Cave hyaena den in the Bohemian Karst (Czech Republic) and actualistic comparisons to modern African spotted hyaenas as zebra hunters. Quat Int 220:174–187CrossRefGoogle Scholar
  24. Dodson P, Wexler D (1979) Taphonomic investigation of owl pellets. Paleobiology 5:275–284Google Scholar
  25. Döppes D, Rabeder G (1997) Pliozäne und Pleistozäne Faunen Österreichs, vol 10. Verlag der Österreichischen Akademie der Wissenschaften, WienGoogle Scholar
  26. Egeland AG, Egeland CP, Bunn HT (2008) Taphonomic analysis of a modern spotted hyaena (Crocuta crocuta) Den From Nairobi, Kenya. J Taphonomy 6:275–299Google Scholar
  27. Enloe JG, David F, Baryshnikov G (2000) hyaenas and hunters: zooarchaeological investigations at Prolom II Cave, Crimea. Int J Osteoarchaeol 10:310–324CrossRefGoogle Scholar
  28. Fernández Rodríguez C, Ramil Rego P, Martínez Cortizas A (1995) Characterization and depositional evolution of hyaena (Crocuta crocuta) coprolites from La Valiña Cave (Northwest Spain). J Archeol Sci 22:597–607CrossRefGoogle Scholar
  29. Fourvel J-B (2012) Hyénidés modernes et fossiles d’Europe et d’Afrique : taphonomie comparée de leurs assemblages osseux. Dissertation Université Toulouse le Mirail - Toulouse IIGoogle Scholar
  30. Fourvel J-B, Fosse P, Brugal J-P, Tournepiche J-F, Cregut-Bonnoure E (2012) Consumption of ungulate long bones by pleistocene hyaenas: a comparative study. J Taphonomy 10:239–263Google Scholar
  31. Fourvel J-B, Fosse P, Fernandez P, Antoine P-O (2014) La grotte de Fouvent, dit l’Abri Cuvier (Fouvent-le-Bas, Haute-Saône, France): analyse taphonomique d’un repaire d’hyènes du Pléistocène supérieur (OIS 3). Paléo 25:79–99Google Scholar
  32. García N, Arsuaga JL (2001) Les carnivores (Mammalia) des sites du Pléistocène ancien et moyen d’Atapuerca (Espagne). l’Anthropologie 105:83–93CrossRefGoogle Scholar
  33. Habermehl KH (1985) Altersbestimmung bei Wild- und Pelztieren. Verlag Paul Parey, Hamburg und BerlinGoogle Scholar
  34. Hemmer H (1993) Lynx lynx (Linnaeus, 1758) Luchs-Nordluchs. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas, vol 5/II, Raubsäuger (Teil II). Aula-Verlag, Wiesbaden, pp 1119–1167Google Scholar
  35. Henschel JR, Tilson R, von Blottnitz F (1979) Implications of a spotted hyaena bone assemblage in the Namib Desert. S Afr Archaeol Bull 34:127–131CrossRefGoogle Scholar
  36. Hill A (1980a) Hyaena provisioning of juvenile offspring at the den. Mammalia 44:594–595Google Scholar
  37. Hill A (1980b) A modern hyena den in Ambroseli National Park, Kenya. In: Leakey RE, Bethwell AO (eds) Proceeding of the 8th Panafrican Congress of Prehistory and Quaternary Studies. Nairobi 5 to 10 September 1977. The International Louis Leakey Memorial Institute for African Prehistory, Nairobi, pp. 137–138Google Scholar
  38. Hill A (1984) Hyaenas and hominids: taphonomy and hypothesis testing. In: Foley R (ed) Hominid evolution and community ecology. Academic Press, London, pp 111–128Google Scholar
  39. Höner O, Holekamp KE, Mills G (2008) Crocuta crocuta. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. Accessed 1 April 2015
  40. Kruuk H (1972) The spotted hyaena: a study of predation and social behavior. University of Chicago Press, ChicagoGoogle Scholar
  41. Lam YM, Chen X, Pearson OM (1999) Intertaxonomic variability in patterns of bone density and the differential representationof bovid, cervid, and equid elements in the archaeological record. Am Antiq 64(2):343–362CrossRefGoogle Scholar
  42. Lloveras L, Moreno-García M, Nadal J (2008a) Taphonomic analysis of leporid remains obtained from modern Iberian Lynx (Lynx pardinus) scats. J Archaeol Sci 35:1–13CrossRefGoogle Scholar
  43. Lloveras L, Moreno-García M, Nadal J (2008b) Taphonomic study of leporid remains accumulated by Spanish Imperial Eagle (Aquila adalberti). Geobios 41:91–100CrossRefGoogle Scholar
  44. Lloveras L, Moreno-García M, Nadal J (2009) The eagle owl (Bubo bubo) as a leporid remains accumulator. Taphonomic analysis of modern rabbit remains recovered from nest of this predators. Int J Osteoarchaeol 19:573–592CrossRefGoogle Scholar
  45. Lloveras L, Moreno-García M, Nadal J (2012) Feeding the foxes: an experimental study to assess their taphonomic signature on leporid remains. Int J Osteoarchaeol 22(5):577–590CrossRefGoogle Scholar
  46. Lloveras L, Nadal J, Moreno-García M, Thomas R, Anglada J, Baucells J, Martorell C, Vilasís D (2014a) The role of the Egyptian Vulture (Neophron percnopterus) as a bone accumulator in cliff rock shelters: an analysis of modern bone nest assemblages from North-eastern Iberia. J Archaeol Sci 44:76–90CrossRefGoogle Scholar
  47. Lloveras L, Thomas R, Lourenço R, Caro J, Dias A (2014b) Understanding the taphonomic signature of Bonelli’s Eagle (Aquila fasciata). J Archaeol Sci 49:455–471CrossRefGoogle Scholar
  48. Lopez Garcia JM, Berto C, Luzi E, Dalla Valle C, Baňuls-Cardona S, Sala B (2015) The genus Iberomys (Chaline, 1972) (Rodentia, Arvicolinae, Mammalia) in the Pleistocene of Italy. Ital J Geosci 134:162–169CrossRefGoogle Scholar
  49. Lüps P, Wandeler A (1993) Meles meles (Linnaeus, 1758) Dachs. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas, vol 5/II, Raubsauger (Teil II). Aula-Verlag, Wiesbaden, pp 856–906Google Scholar
  50. Lyman RL (1994) Relative abundances of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios 9(3):288–298CrossRefGoogle Scholar
  51. Lyman RL (2008) Quantitative paleozoology. University Press, CambridgeCrossRefGoogle Scholar
  52. Mallye J-B, Cochard D, Laroulandie V (2008) Bone accumulation around small carnivores burrows: carnivores modifications. Ann Paléontol 94:187–208CrossRefGoogle Scholar
  53. Martinez-Navarro B, Belmaker M, Bar-Yosef O (2009) The large carnivores from ‘Ubeidiya’ (early Pleistocene, Israel): biochronological and biogeographical implications. J Hum Evol 56:514–524CrossRefGoogle Scholar
  54. Mezzena F, Palma di Cesnola A (1971) Industria acheulena “in situ” nei depositi esterni della Grotta Paglicci (Rignano Garganico – Foggia). Rivista di Scienze Preistoriche 26(1):3–30Google Scholar
  55. Mills MGL (1985) Related spotted hyaenas forage together but do not cooperate in rearing young. Nature 316:61–62CrossRefGoogle Scholar
  56. Mills MGL, Mills M (1977) An analysis of bones collected at hyaena breeding dens in the Gemsbok National Parks. Ann Transv Mus 30:145–155Google Scholar
  57. Moroni Lanfredini A, Freguglia M, Bernardini F, Boschian G, Cavanna C, Crezzini J, Gambogi P, Longo L, Milani L, Parenti F, Ricci S (2010) Nuove ricerche alla Grotta dei Santi (Monte Argentario, Grosseto). In: Negroni Catacchio N (ed.) L’alba dell’Etruria Fenomeni di continuità e trasformazione nei secoli XII-VIII a.C. Ricerche e scavi, Atti del nono incontro di studi. Centro Studi di Preistoria e Archeologia, Milano, pp 649–662Google Scholar
  58. Moullé PE (1992) Les grands mammifères du Pléistocène inférieur de la grotte du Vallonnet (Roquebrune-Cap-Martin, Alpes-Maritimes). Etude paléontologique des Carnivores, Equidé, Suidé et Bovidés. Ph. D. Dissertation. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  59. Outram AK (2002) Bone fracture and within-bone nutrients: an experimentally based method for investigation levels of marrow extraction. In: Miracle P, Milner N (eds) Consuming passions and patterns of consumption. McDonald Institute Monographs, Cambridge, pp 51–63Google Scholar
  60. Palma di Cesnola A (1993) Il Paleolitico Superiore in Italia. Introduzione allo studio. Garlatti & Razzai Editori, FirenzeGoogle Scholar
  61. Palma di Cesnola A (2001) Notizie preliminari sugli scavi condotti dall’Università di Siena durante gli anni 1999 e 2000 nell’area esterna di Paglicci. In: Gravina A (ed) Atti 21° Convegno Nazionale sulla Preistoria, Protostoria, Storia della Daunia (San Severo, 24-26 Nov. 2000). Archeoclub d'Italia sede di San Severo, San Severo, pp 35–41Google Scholar
  62. Palma di Cesnola A (2004) Storia delle ricerche. In: Palma di Cesnola A (ed) Paglicci L’Aurignaziano e il Gravettiano Antico. Claudio Grenzi Editore, Firenze, pp 15–25Google Scholar
  63. Palma di Cesnola A (2006) L’Aurignacien et le Gravettien ancien de la grotte Paglicci au Mont Gargano. l’Anthropologie 110:355–370CrossRefGoogle Scholar
  64. Patrocinio Espigares M, Martínez-Navarro B, Palmqvist P, Ros-Montoya S, Toro I, Agustí J, Sala R (2013) Homo vs. Pachycrocuta: Earliest evidence of competition for an elephant carcass between scavengers at Fuente Nueva-3 (Orce, Spain). Quat Int 295:113–125CrossRefGoogle Scholar
  65. Pavao B, Stahl PW (1999) Structural density assays of leporid skeletal elements with implications for taphonomic, actualistic and archaeological research. J Archaeol Sci 26:53–66CrossRefGoogle Scholar
  66. Peters G (1993) Canis lupus (Linnaeus, 1758) Wolf. In: Niethammer J, Krapp F (eds) Handbuch der Säugetiere Europas, vol 5/I, Raubsauger (Teil I). Aula-Verlag, Wiesbaden, pp 47–106Google Scholar
  67. Pickering TR (2002) Reconsideration of criteria for differentiating faunal assemblages accumulated by hyaenas and hominids. Int J Osteoarchaeol 12:127–141. doi: 10.1002/oa.594 CrossRefGoogle Scholar
  68. Piperno M, Giacobini G (1991) A taphonomic study of the Paleosurface of Guattari Cave (Monte Circeo, Latina, Italy). Quaternaria Nov. 1:143–161Google Scholar
  69. Pitti C, Tozzi C (1971) La Grotta del Capriolo e la Buca della Iena presso Mommio (Camaiore, Lucca). Rivista di Scienze Preistoriche 26:213–258Google Scholar
  70. Pokines JT, Kerbis Peterhans JC (2007) Spotted hyaena (Crocuta crocuta) den use and taphonomy in the Masai Mara National Reserve, Kenya. J Archaeol Sci 34:1914–1931CrossRefGoogle Scholar
  71. Potts R, Shipman P, Ingall E (1988) Taphonomy, paleoecology and hominids of Lainyamok, Kenya. J Hum Evol 17:597–614CrossRefGoogle Scholar
  72. Revedin A, Longo L, Mariotti Lippi M, Marconi E, Ronchitelli A, Svoboda J, Anichini E, Gennai M, Aranguren B (2015) New technologies for plant food processing in the Gravettian. Quat Int 359–360:77–88CrossRefGoogle Scholar
  73. Ricci S, Capecchi G, Boschin F, Arrighi S, Ronchitelli A, Condemi S (2015) Toothpick use among epigravettian humans from Grotta Paglicci (Italy). Int J Osteoarchaeol. doi: 10.1002/oa.2420 Google Scholar
  74. Rodríguez-Hidalgo A, Lloveras L, Moreno-García M, Saladié P, Canals A, Nadal J (2013) Feeding behavior and taphonomic characterization of non-ingested rabbit remains produced by the Iberian Lynx (Lynx pardinus). J Archaeol Sci 40:3031–3045CrossRefGoogle Scholar
  75. Ronchitelli A, Mugnaini S, Arrighi S, Atrei A, Capecchi G, Giamello M, Longo L, Marchettini N, Viti C, Moroni A (2015) Simbology and technology during the Gravettian: Paglicci burials II and III (Rignano Garganico - Foggia - Southern Italy). Quat Int 359–360:423–441CrossRefGoogle Scholar
  76. Roper TJ, Tait AI, Fee D, Christian SF (1991) Internal structure and contents of three badger (Meles meles) setts. J Zool 225:115–124CrossRefGoogle Scholar
  77. Sala B (1983) Variations climatiques et sequences chronologiques sur la base des variations des associations fauniques a grands mammiferes. Rivista di Scienze Preistoriche 38(1–2):161–180Google Scholar
  78. Salnicki J, Teichmann M, Wilson VJ, Murindagomo F (2001) Spotted hyaenas Crocuta crocuta prey on new-born elephant calves in Hwange National Park, Zimbabwe. Koedoe 44:79–83. doi: 10.4102/koedoe.v44i2.177 CrossRefGoogle Scholar
  79. Sardella R, Petrucci M (2012) The earliest Middle Pleistocene Crocuta crocuta (Erxleben, 1777) at Casal Selce (Rome, Italy). Quat Int 267:103–110CrossRefGoogle Scholar
  80. Skinner JD, Henschel JR, van Jaarsveld AS (1986) Bone-collecting habits of spotted hyaenas (Crocuta crocuta) in the Kruger National Park. S Afr J Zool 21:303–308CrossRefGoogle Scholar
  81. Stiner MC (1991) The faunal remains from Grotta Guattari: a taphonomic perspective. Curr Anthropol 32:103–117CrossRefGoogle Scholar
  82. Stiner MC (2004) Comparative ecology and taphonomy of spotted hyaenas, humans, and wolves in Pleistocene Italy. Rev Paléobiol 23:771–785Google Scholar
  83. Stuart AJ, Lister AM (2015) New radiocarbon evidence on the extirpation of the spotted hyaena (Crocuta crocuta (Erxl.) in northern Eurasia. Quat Sci Rev. doi: 10.1016/j.quascirev.2013.10.010 Google Scholar
  84. Villa P, Bartram L (1996) Flaked bone from a hyaena den. Paléo 8:143–159CrossRefGoogle Scholar
  85. Villa P, Sánchez Goñi MF, Cuenca Bescós G, Grün R, Ajas A, García Pimienta JC, Lees W (2010) The archaeology and paleoenvironment of an Upper Pleistocene hyaena den: An integrated approach. J Archaeol Sci 37:919–935CrossRefGoogle Scholar
  86. Wernert P (1955) Relief d’hyènes quaternaries des loess d’Achenheim. Bull Assoc Phil Alsace Lorraine 9/3:150–156Google Scholar
  87. Wierer U (2013) Variability and standardization: the early Gravettian lithic complex of Grotta Paglicci, Southern Italy. Quat Int 288:215–238CrossRefGoogle Scholar
  88. Zapfe H (1942) Lebensspuren der eisenzeitlichen Höhlenhyäne. Palaeobiologica 7:111–154Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jacopo Crezzini
    • 1
    • 2
  • Paolo Boscato
    • 1
  • Stefano Ricci
    • 1
  • Annamaria Ronchitelli
    • 1
  • Vincenzo Spagnolo
    • 1
  • Francesco Boschin
    • 1
    • 2
  1. 1.U.R. Preistoria e Antropologia, Dipartimento di Scienze Fisiche, della Terra e dell’AmbienteUniversità degli Studi di SienaSienaItaly
  2. 2.Centro Studi sul Quaternario OnlusSansepolcroItaly

Personalised recommendations