Advertisement

Archaeological and Anthropological Sciences

, Volume 9, Issue 2, pp 209–222 | Cite as

A preliminary study of ceramic pastes in the copper age pottery production of the Rome area

  • Vanessa ForteEmail author
  • Laura Medeghini
Original Paper

Abstract

This paper presents the preliminary results of an analytical study on domestic pottery samples originating from the Copper Age sites of Casetta Mistici, Tor Pagnotta, Osteria del Curato-Via Cinquefrondi, Torre della Chiesaccia and Valle dei Morti, all of which are located in the Rome area (Latium, Italy). The aim of this research is to define the compositional features of the ceramic pastes and to reconstruct the main technological choices characterising pottery production in these contexts. The importance of these archaeological sites lies in their geographic position, being located in an area bounded by the Tiber and Aniene rivers and the Colli Albani volcano, and in their stratigraphic sequence, spanning from the mid-fourth to the end of the third millennium bc. This research, based on a petrographic and chemical investigation of pottery samples, led to the distinction of eight petrographic groups that reflect specific choices in pottery production. Moreover, the analytical results provide indications about the prehistoric pottery production of the Rome area in relation to the ceramic recipes used, the pastes that were obtained and their sourcing areas.

Keywords

Copper age Prehistoric pottery Pottery technology Pottery production Petrographic analysis XRF analysis 

References

  1. Anzidei AP, Carboni G (2011) La facies del Gaudo nel territorio di Roma nel quadro delle manifestazioni culturali eneolitiche del versante tirrenico. In: Aurino P (ed) Tra le rocce nascoste agli dei. Incontro di studi in ricordo di Giancarlo Bailo Modesti, Napoli, pp 309–321Google Scholar
  2. Anzidei AP, Carboni G, Castagna MA, Celant A, Cianca M, Egidi R, Favorito S, Funiciello R, Giordano G, Malvone M, Tagliacozzo A (2007a). L’abitato eneolitico di Osteria del Curato-Via Cinquefrondi: nuovi dati sulle facies archeologiche di Laterza e Ortucchio nel territorio di Roma. In: Atti IIPP XL, Firenze, I:477–508Google Scholar
  3. Anzidei AP, Carboni G, Egidi R, Malvone M (2007b). Rinaldone a sud del Tevere: nuove necropoli e materiali dai contesti di abitato nel comprensorio della Via Tuscolana nell’area sud-est di Roma, in Atti IIPP XL Firenze, I:461–476Google Scholar
  4. Anzidei AP, Carboni G, Carboni L, Castagna MA, Catalano P, Egidi R, Lemorini C, Melvone M, Spadoni D, (2011a) Il gruppo Roma-Colli Albani della facies di Rinaldone: organizzazione spaziale, rituali e cultura materiale nelle necropoli di Lucrezia Romana e Romanina (Roma). In: Atti IIPP XLIII, Firenze, pp 298–308Google Scholar
  5. Anzidei AP, Carboni G, Carboni L, Catalano P, Celant A, Cereghino R, Cerilli E, Guerrini S, Lemorini C, Mieli G, Musco S, Rambelli C, Pizzuti F (2011b) Il Gaudo a Sud del Tevere: abitati e necropoli dall’area romana. in L’Età del Rame in Italia. In: Atti IIPP XLIII, Firenze, pp 309–321.Google Scholar
  6. Anzidei AP, Carboni G, Mieli G (2012) Il gruppo Roma-Colli Albani: un decennio di ricerche e studi sulla facies di Rinaldone nel territorio di Roma. In: Atti PPE X, Milano, pp 197–214Google Scholar
  7. Bailo Modesti G, Salerno A (1998) Pontecagnano. II 5. La necropoli eneolitica. L’età del Rame in Campania nei villaggi dei morti. Istituto Universitario Orientale di Napoli, Annali di Archeologia e Storia Antica, Quad. 11, Napoli.Google Scholar
  8. Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, De Benedetti AA, Morra V, Conticelli S (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, central Italy: inferences on volcano evolution and magma genesis. Bull Volcanol 71:977–1005CrossRefGoogle Scholar
  9. Carboni G, Anzidei AP (2013) Cronologia assoluta e relative dell’età del rame in Italia. Atti dell’Incontro di Studi. In: Cocchi Genik D (ed) Cronologia assoluta e relative dell’età del rame in Italia. Atti dell’Incontro di Studi. Universita di Verona, Verona, pp 91–118Google Scholar
  10. Chiarabba C, Giordano G, Mattei M, Funiciello R (2010) The three-dimensional structure of the Colli Albani volcano. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. Geological Society, London, pp 29–41Google Scholar
  11. Conticelli S, Boari E, Avanzinelli R, De Benedetti AA, Giordano G, Mattei E, Melluso L, Morra V (2010) Geochemestry, isotopes and mineral chemistry of the Colli Albani volcanic rocks: constraints on magma genesis and evolution. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. the Geological Society, London, pp 107–139Google Scholar
  12. Cuomo di Caprio N (1992) Studio tecnologico e analisi di microscopia ottica di 63 campioni ceramici dalla necropoli di Osteria dell’Osa. In: Bietti Sestieri AM (ed) La necropoli laziale di Osteria dell’Osa. Edizioni Quazar, Rome, pp 449–478Google Scholar
  13. Cuomo Di Caprio N, Vaughan SJ (1993) An experimental study in distinguishing grog (chamotte) from argillaceous inclusions in ceramic thin sections. Archeomaterials 7:21–40Google Scholar
  14. De Rita D, Giordano G, Esposito A, Fabbri M, Rodani S (2002) Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy). J Volcanol Geotherm Res 118:77–98CrossRefGoogle Scholar
  15. Forte V (2015) Tecnologia e funzione nella produzione ceramica eneolitica del territorio di Roma: casi studio, problemi e potenzialità della ricerca. Ph.D. Thesis, Sapienza University of Rome URl: http://hdl.handle.net/10805/2653
  16. Freestone IC, Meeks ND, Middleton AP (1985) Retention of phosphate in buried ceramics: an electron microbeam approach. Archaeometry 27:161–177CrossRefGoogle Scholar
  17. Giordano G, The Carg Team (2010) Stratigraphy, volcano tectonics and evolution of the Colli Albano volcanic field. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. the Geological Society, London, pp 43–97Google Scholar
  18. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80CrossRefGoogle Scholar
  19. Gozzi F, Gaeta M, Freda C, Mollo S, Di Rocco T, Marra F, Dallai L, Pack A (2014) Primary magmatic calcite reveals origin from crustal carbonate. Lithos 190:191–203CrossRefGoogle Scholar
  20. Lagrou D, Dreesen R, Broothaers L (2004) Comparative quantitative petrographical analysis of Cenozoic aquifer sands in Flanders (N Belgium): overall trends and quality assessment. Mater Charact 53:317–326CrossRefGoogle Scholar
  21. Maniatis Y, Tite MS (1981) Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East. J Archaeol Sci 8:59–76CrossRefGoogle Scholar
  22. Marra F, Deocampo D, Jackson MD, Ventura G (2011) The Alban Hills and Monti Sabatini volcanic products used in ancient Roman masonry (Italy): an integrated stratigraphic, archaeological, environmental and geochemical approach. Earth Sci Rev 108:115–136CrossRefGoogle Scholar
  23. Muntoni I (2003) Modellare l’argilla. Vasai del neolitico antico e medio nelle Murge pugliesi. Origines, FirenzeGoogle Scholar
  24. Muntoni I, Pallecchi P (1998) La produzione ceramica dell’insediamento eneolitico di Le Cerquete-Fianello (Maccarese): primi dati archeometrici e criteri di classificazione. In Atti U.I.S.P.P. (Forlì 8–14 settembre 1996) IV: 51–59.Google Scholar
  25. Muntoni I, Pallecchi P (2002) Composizione e provenienza delle materie prime utilizzate per la produzione vascolare. In: Manfredini A (ed) Le dune, il lago, il mare. Una comunità di villaggio dell’età del Rame a Maccarese. Origines, Firenze, pp 102–115Google Scholar
  26. Musthafa AM, Janaki K, Velraj G (2010) Microscopy, porosimetry and chemical analysis to estimate the firing temperature of some archaeological pottery shreds from India. Microchem J 95:311–314CrossRefGoogle Scholar
  27. Pallecchi P (1995) Osservazioni sulla composizione e la tecnologia delle ceramiche dell’insediamento neolitico di Quadrato di Torre Spaccata (Roma). Origini XIX: 297–303Google Scholar
  28. Reedy CL (2006) Review of digital image analysis of petrographic thin sections in conservation research. J Am Inst Conserv 45:127–146CrossRefGoogle Scholar
  29. Sivilli S, Merighi F (2002) Analisi delle classi di impasto e dei trattamenti di superficie. In: Manfredini A (ed) Le dune, il lago, il mare. Una comunità di villaggio dell’età del Rame a Maccarese. Origines, Firenze, pp 116–121Google Scholar
  30. Trigila R, De Benedetti AA (1993) Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria. J Volcanol Geotherm Res 58:315–343CrossRefGoogle Scholar
  31. Whitbread IK (1986) The characterization of argillaceous inclusions in ceramic thin sections. Archaeometry 28:79–88CrossRefGoogle Scholar
  32. Whitbread IK (1995) Greek transport amphorae: a petrological and archaeological study. British School at Athens, Fitch Laboratory Occasional Paper 4, AthensGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ClassicsSapienza University of RomeRomeItaly
  2. 2.Department of Earth SciencesSapienza University of RomeRomeItaly

Personalised recommendations