Skip to main content

Colour in context. Pigments and other coloured residues from the Early-Middle Holocene site of Takarkori (SW Libya)

An Erratum to this article was published on 28 February 2017

Abstract

We present the multidisciplinary investigation of pigments and artefacts with traces of colour from the Early-Middle Holocene site of Takarkori, located in the Tadrart Acacus Mountains (central Sahara, SW Libya). Here, geological, archaeological, taphonomic and chemical studies (Raman, Fourier-transform infrared, X-ray powder diffraction, gas chromatography–mass spectrometry) are used to examine a vast range of artefacts (raw materials, grinding stones, painted items, as well as lithic, bone, wooden and ceramic tools) equally distributed from Late Acacus contexts related to hunter-gatherers (ca. 8900–7400 uncal years bp) to pastoral groups (ca. 7400–4500 uncal years bp). The exploited minerals (goethite, hematite, kaolinite and jarosite, among others) are locally procured and processed using quartzarenite grinding stones of different shapes and sizes. Thermal treatment of the minerals is also suggested by X-ray powder diffraction (XRD) and Raman studies. Gas chromatography–mass spectrometry (GC-MS) analyses show the addition of a lipid binder to small lumps of pigments in order to obtain a sticky product. Their fatty acid distribution differs from the residues on grinding stones, pointing to a specific use of these lumps. The grinding stones have also been used to crush and pulverize the pigments and as base for colour preparation. A sample of colour from a fallen painted slab referable to late pastoral phases shows the presence of a binder, chemically identified as casein. Taken together, the evidence collected at Takarkori conveys to suggest an articulated chaîne opératoire, not only directed towards the preparation of pigments for the parietal rock art but also to other non-utilitarian functions, such as body care and ornamentation and decoration of artefacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Ambers J (2004) Raman analysis of pigments from the Egyptian Old Kingdom. J Raman Spectrosc 35:768–773

    Article  Google Scholar 

  2. Barich BE (ed) (1987) Archaeology and environment in the Libyan Sahara. The excavations in the Tadrart Acacus, 1978-1983 vol 368. BAR, Oxford

    Google Scholar 

  3. Barich BE, Mori F (1970) Missione paletnologica italiana nel Sahara libico. Risultati della campagna 1969. Origini IV:79–142

    Google Scholar 

  4. Barth H (1857–1858) Reisen und Entdeckungen in Nord und Central Africa in den Jahren 1849 bis 1855 (5 vols.). Justus Perthes, Gotha

  5. Belcastro MG, Condemi S, Mariotti V (2010) Funerary practices of the Iberomaurusian population of Taforalt (Tafoughalt, Morocco, 11–12,000 BP): the case of Grave XII. J Hum Evol 58:522–532. doi:10.1016/j.jhevol.2010.03.011

    Article  Google Scholar 

  6. Biagetti S, di Lernia S (2013) Holocene fillings of Saharan rock shelters: the case of Takarkori and other sites from the Tadrart Acacus Mts. (SW Libya). Afr Archaeol Rev 30:305–328

    Article  Google Scholar 

  7. Bikiaris D, Daniilia S, Sotiropolou S, Katsimbiri O, Pavlidou E, Moutsatsou AP, Chryssoulakis Y (1999) Ochre differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim Acta 56:3–18

    Article  Google Scholar 

  8. Bladh K (1982) The Formation of Goethite, Jarosite, and Alunite during the Weathering of Sulfide-Bearing Felsic Rocks. Econ Geol 77:176–184

    Article  Google Scholar 

  9. Cherkinsky A, di Lernia S (2013) Bayesian approach to 14C dates for estimation of long-term archaeological sequences in arid environments: the Holocene Site of Takarkori Rockshelter, Southwest Libya. Radiocarbon 55:771–782

    Article  Google Scholar 

  10. Copley MS, Rose PJ, Clapham A, Edwards DN, Horton MC, Evershed RP (2001) Detection of palm fruit lipids in archaeological pottery from QasrIbrim, Egyptian Nubia. Proc R Soc Lond B 268:593–597

    Article  Google Scholar 

  11. Copley MS, Bland HA, Rose P, Horton M, Evershed RP (2005) Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130:860–871

    Article  Google Scholar 

  12. Cremaschi M, di Lernia S (eds) (1998) Wadi Teshuinat. Palaeoenvironment and prehistory in South-western Fezzan (Libyan Sahara). Quaderni di GeodinamicaAlpina e Quaternaria, vol 7. CNR, Milano

    Google Scholar 

  13. Cremaschi M, Trombino L (1998) The palaeoclimatic significance of the paleosols in southern Fezzan (Libyan Sahara): morphological and micromorphological aspects. Catena 34:131–156

    Article  Google Scholar 

  14. Cremaschi M, Zerboni A, Mercuri AM, Olmi L, Biagetti S, di Lernia S (2014) Takarkori rock shelter (SW Libya): an archive of Holocene climate and environmental changes in the central Sahara. Quat Sci Rev 101:36–60. doi:10.1016/j.quascirev.2014.07.004

    Article  Google Scholar 

  15. D’Elboux Bernardino N, SevilhanoPuglieri T, de Faria DLA (2014) Effect of MnO2 and α-Fe2O3 on organic binders degradation investigated by Raman spectroscopy. Vib Spectrosc 70:70–77

    Article  Google Scholar 

  16. de Faria DLA, Lopes FN (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc 45:117–121

    Article  Google Scholar 

  17. de Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  18. di Lernia S (ed) (1999) The Uan Afuda Cave: Hunter-Gatherers Societies of Central Sahara. AZA Monographs, vol 1. All’Insegna del Giglio, Firenze

    Google Scholar 

  19. di Lernia S (2005) Incoming tourism, outgoing culture: tourism, development and cultural heritage in the Libyan Sahara. J N Afr Stud 10:441–457

    Article  Google Scholar 

  20. di Lernia S (2012) Thoughts on the rock art of the Tadrart Acacus Mts., SW Libya. Adoranten 19–37

  21. di Lernia S, Gallinaro M (2010) The date and context of Neolithic rock art in the Sahara: engravings and ceremonial monuments from Messak Settafet (south-west Libya). Antiquity 84:954–975

    Article  Google Scholar 

  22. di Lernia S, Gallinaro M (2011) Working in a UNESCO WH site. Problems and practices on the rock art of the Tadrart Acacus (SW Libya, central Sahara). J Afr Archaeol 9:159–175

    Article  Google Scholar 

  23. di Lernia S, Manzi G (1998) Funerary practices and anthropological features at 8000-5000 BP. Some evidence from central-southern Acacus (Libyan Sahara). In: Cremaschi M, di Lernia S (eds) Wadi Teshuinat: Palaeoenvironment and Prehistory in South-western Fezzan (Libyan Sahara). C.N.R, Milano, pp 217–242

    Google Scholar 

  24. di Lernia S, Tafuri MA (2013) Persistent deathplaces and mobile landmarks. The Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). J Anthropol Archaeol 32:1–15

    Article  Google Scholar 

  25. di Lernia S, Zampetti D (eds) (2008) La Memoriadell’arte. La Memoria dell’Arte. Le Pitture Rupestri dell’Acacus tra Passato e Futuro. All’Insegna del Giglio, Firenze

    Google Scholar 

  26. di Lernia S, Massamba N'siala I, Mercuri AM (2012) Saharan prehistoric basketry. Archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts., SW Libya). J Archaeol Sci 39:1837–1853

    Article  Google Scholar 

  27. di Lernia S et al (2013) Inside the “African Cattle Complex”: animal burials in the Holocene Central Sahara. PLoS One 8:e56879. doi:10.1371/journal.pone.0056879

    Article  Google Scholar 

  28. Dunne J et al (2012) First dairying in ‘Green’ Saharan Africa in the 5th Millennium BC. Nature 486:390–394

    Article  Google Scholar 

  29. Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworths, London

    Google Scholar 

  30. Galeĉiĉ M (1984) Geological map of Libya, explanatory booklet, sheet: Anay, NG 32-16, scale 1:250000. Industrial Research Centre, Tripoli

    Google Scholar 

  31. Gallinaro M (2013) Saharan rock art: local dynamics and wider perspectives. Arts 2:350–382

    Article  Google Scholar 

  32. Gallinaro M (in press) Rock art landscape of the central Saharan massifs: a contextual analysis of Round Heads style. In: Gutierrez et al. (ed) Proceedings of the International Colloquium, Rock art of Africa Paris, 15, 16 and 17 January 2014

  33. Garcea EAA (ed) (2001) Uan Tabu: in the settlement history of the Libyan Sahara. AZA Monographs 2. All’Insegna del Giglio, Firenze

    Google Scholar 

  34. Garcea EAA, Sebastiani R (1998) Middle and Late Pastoral Neolithic from the Uan Telocatrockshelter, Tadrart Acacus (Libyan Sahara). In: Cremaschi M, di Lernia S (eds) Wadi Teshuinat—palaeoenvironment and prehistory in south-western Fezzan (Libyan Sahara). CNR, Roma-Milano, pp 201–216

    Google Scholar 

  35. Gialanella S, Belli R, Dalmeri G, Lonardelli I, Mattarelli M, Montagna M, Toniutti L (2011) Artificial or natural origin of hematite-based red pigments in archaeological contexts: the case of Riparo Dalmeri (Trento, Italy). Archaeometry 53:950–962

    Article  Google Scholar 

  36. Guagnin M (2012) From savanna to desert: rock art and the environment in the Wadi al-Hayat (Libya). In: Huyge D, van Noten F, Swinne D (eds) The signs of which times? Chronological and palaeoenvironmental issues in the rock art of Northern Africa. Royal Academy for Overseas Sciences, Brussels, pp 145–157

    Google Scholar 

  37. Hachid M et al (2012) Quelques résultats du projet de datation directe et indirecte de l’art rupestre Saharien. In: Huyge D, Van Noten F, Swinne D (eds) The signs of which times? Chronological and palaeoenvironmental issues in the rock art of Northern Africa. Royal Academy for Overseas Sciences, Brusselles, pp 71–96

    Google Scholar 

  38. Harmann J (2005–2013) DStretch.Web Site for the DStretch plugin to ImageJ.DStretch. A tool for the digital enhancement of pictographs. http://www.dstretch.com/. Accessed June 2014

  39. Jakovlejeciĉ Ž (1984) Geological map of Libya. Explanatory booklet, sheet: Al Awaynat, NG 32-12, scale 1:250000. Socialist People’s Libyan Arab Jamahiriya, Tripoli

    Google Scholar 

  40. Keene A, Johnston S, Bush R, Sullivan L, Burton E (2010) Reductive dissolution of natural jarosite in a tidally inundated acid sulfate soil: geochemical implications. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1-6 August 2010, Brisbane, Australia., pp 100–103

  41. Krause S, Riemer H, Leisen S (2013) Paints and pigments in the rock art of Wadi Sura. In: Kuper R (ed) Wadi Sura—the cave of beasts. A rock art site in the Gilf Kebir (sw Egypt), vol Africa Praehistorica 26. Heinrich Barth Institute, Köln, pp 58–61

  42. Kuper R (ed) (2013) Wadi Sura: the cave of beasts; a rock art site in the Gilf Kebir (SW-Egypt). Africa Praehistorica, vol 26. Heinrich-Barth-Institut, Köln

    Google Scholar 

  43. Kustova GN, Burgina EB, Sadikov VA, Poryvaev SG (1992) Vibrational spectroscopic investigation of the goethite thermal decomposition products. Phys Chem Miner 18:379–382

    Article  Google Scholar 

  44. Le Quellec JL (1998) Art Rupestre et Préhistorie du Sahara. Le Messak Libyen. Bibliotheque Scientifique Payot, Paris

    Google Scholar 

  45. Le Quellec JL (2013) A new chronology for Saharan rock art. In: Malla B (ed) The world of rock art: an overview of the five continents. Aryan Books International, New Delhi, pp 23–44

    Google Scholar 

  46. Mahaney W, Hancock RGV, Inoue M (1993) Geochemistry and clay mineralogy of soils eaten by Japanese macaques. Primates 34:85–91

    Article  Google Scholar 

  47. Maier MS, de Faria DLA, Boschin MT, Parera SD, del Castillo Bernal MF (2007) Combined use of vibrational spectroscopy and GC-MS methods in the characterization of archeological pastes from Patagonia. Vib Spectrosc 44:182–186

    Article  Google Scholar 

  48. Mariotti V, Condemi S, Belcastro MG (2014) Iberomaurusian funerary customs: new evidence from unpublished records of the 1950s excavations of the Taforalt necropolis (Morocco). J Archaeol Sci 49:488–499. doi:10.1016/j.jas.2014.05.037

    Article  Google Scholar 

  49. Mercuri AM (2008) Human influence, plant landscape evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J Arid Environ 72:1950–1967

    Article  Google Scholar 

  50. Mills JS, White R (1994) The organic chemistry of museum objects. Butterwhorts, London

    Google Scholar 

  51. Mittet GR (1980) The degradation of tall oil fatty acids by molecular oxygen in alkaline media. Diss Abstr Int B 41:1373

    Google Scholar 

  52. Moioli P, Seccaroni C (1992) Esame delle tracce di pigmenti su alcuni frammenti di dipinti rupestri. In: Lupacciolu M (ed) Arte e Culture del Sahara preistorico. Qasar, Università degliStudi di Roma «La Sapienza», Roma, pp 109–110

    Google Scholar 

  53. Mori F (1965) Tadrart Acacus. Arte Rupestre e Culture del Sahara Preistorico. Einaudi, Torino

    Google Scholar 

  54. Mori F, Ponti R, Messina A, Flieger M, Havlicek V, Sinibaldi M (2006) Chemical characterization and AMS radiocarbon dating of the binder of a prehistoric rock pictograph at Tadrart Acacus, southern west Libya. J Cult Herit 7:344–349

    Article  Google Scholar 

  55. Morris RV, Lauer HV, Lawson CA, Gibson EK, Nace GA, Stewart C (1985) Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). J Geophys Res 90:3126–3144

    Article  Google Scholar 

  56. Mortimore JL, Marshall LR, Almond MJ, Hollins P, Matthews W (2004) Analysis of red and yellow ochre samples from Clearwell caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochim Acta A 60:1179–1188

    Article  Google Scholar 

  57. Muzzolini A (2001) Saharan Africa. In: Whitley DS (ed) Handbook of rock art research. AltaMira Press, Walnut Creek, pp 605–636

    Google Scholar 

  58. Onoratini G, Perinet G (1985) Données minéralogiques sur les colorants rouges préhistoriques de Provence: démonstration que certains d'entre eux ont été obtenus par calcination de goethite. C RAcad Scie Sér 2 301:119–124

    Google Scholar 

  59. Pomiès MP, Morin G, Vignaud C (1998) XRD study of goethite-hematite transformation: application to the identification of heated prehistoric pigments. Eur J Solid State Inorg Chem 35:9–25

    Article  Google Scholar 

  60. Ponti R (1995) Painted grinding stone from the Uan Amil shelter (Tadrart Acacus—Libya). Quat Nova V:171–186

    Google Scholar 

  61. Rampazzi L, Cariati F, Tanda G, Colombini MP (2002) Characterisation of wall paintings in the SosFurrighesos necropolis (Anela, Italy). J Cult Herit 3:237–240

    Article  Google Scholar 

  62. Rampazzi L, Campo L, Cariati F, Tanda G, Colombini MP (2007) Prehistoric wall paintings: the case of the Domus de Janas necropolis (Sardinia, Italy). Archaeometry 49:559–569

    Article  Google Scholar 

  63. Regert M, Bland HA, Dudd SN, van Bergen PF, Evershed RP (1998) Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proc R Soc Lond B 265:2027–2032

    Article  Google Scholar 

  64. Rifkin R (2011) Assessing the efficacy of red ochre as a prehistoric hide tanning ingredient. J Afr Archaeol 9:131–158

    Article  Google Scholar 

  65. Rifkin R (2012) The symbolic and functional exploitation of ochre during the South African Middle Stone Age, PhD Dissertation, University of Johannesburg, http://wiredspace.wits.ac.za/handle/10539/11832

  66. Roche J (1963) L’Epipaleolithiquemarocain. Paris

  67. Rudner I (1982) Khoisan pigments and paints and their relationships to rock paintings. Annals of the South African Museum 87. South African Museum, Cape Town

    Google Scholar 

  68. Sansoni U (1994) Le più antiche pitture del Sahara. L’arte delle Teste Rotonde. Jaka Book, Milano

    Google Scholar 

  69. Shimoyama A, Hayakawa K, Harada K (1993) Conversion of oleic acid to monocarboxylic acids and γ-lactones by laboratory heating experiments in relation to organic diagenesis. Geochem J 27:59–70

    Article  Google Scholar 

  70. Shimoyama A, Kisu N, Harada K, Wakita S, Tsuneki A, Iwasaki T (1995) Fatty acid analysis of archeological pottery vessels excavated in Tell Mastuma, Syria. Bull Chem Soc Jpn 68:1565–1568

    Article  Google Scholar 

  71. Smith B (2013) Rock art research in Africa. In: Lane P, Mitchell P (eds) Handbook of African archaeology. Oxford University Press, Oxford, pp 145–162

  72. Soleihavoup F (2007) L’art mystérieux des Têtes Rondes au Sahara. Faton, Paris

    Google Scholar 

  73. Tafuri MA, Bentley RA, Manzi G, di Lernia S (2006) Mobility and kinship in the prehistoric Sahara: strontium isotope analysis of Holocene human skeletons from the Acacus Mts. (southwestern Libya). J Anthropol Archaeol 25:390–402

    Article  Google Scholar 

  74. Udda M, Sassa S, Yoshimura S, Kondo J, Nakamura M, Ban Y, Adachi H (2000) Yellow, red and blue pigments from ancient Egyptian palace painted walls. Nucl Inst Methods Phys Res B 161–163:758–761

    Article  Google Scholar 

  75. van der Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam

    Google Scholar 

  76. Wadley L (2001) What is cultural modernity? A general view and a south African perspective from Rose cottage cave. Camb Archaeol J 11:201–221

    Article  Google Scholar 

  77. Zerboni A (2012) Rock art from the central Sahara (Libya): a geoarchaeological and palaeoenvironmental perspective. In: Huyge D, Van Noten F, Swinne D (eds) The signs of which times? Chronological and palaeoenvironmental issues in the rock art of Northern Africa. Royal Academy for Overseas Sciences, Bruxelles, pp 175–195

    Google Scholar 

  78. Zerboni A, Trombino L, Cremaschi M (2011) Micromorphological approach to polycyclic pedogenesis on the Messak Settafet plateau (central Sahara): formative processes and palaeoenvironmental significance. Geomorphology 125:319–335

    Article  Google Scholar 

  79. Zerboni A, Perego A, Cremaschi M (2014) Geomorphological map of the Tadrart Acacus massif and the Erg Uan Kasa (Libyan Central Sahara). J Maps. doi:10.1080/17445647.2014.955891

Download references

Acknowledgments

The research is part of the activities of the Italian-Libyan Archaeological Mission in the Acacus and Messak (central Sahara), Sapienza University of Rome and Department of Archaeology, Tripoli, directed by Savino di Lernia. Funds are provided by Grandi Scavi di Ateneo, Sapienza University of Rome and Italian Minister of Foreign Affairs—DGPS, entrusted to SDL.

SDL designed the research, directed the fieldwork, including sampling, studied the archaeological assemblage and wrote the paper. SB performed chemical analyses and wrote the relevant parts of the paper. IC and VG contributed to the chemical experiments. MC and AZ provided information on the geological context. MG contributed to the background of rock art evidence, analysed the painted artwork and contributed to the archaeological analysis. GP studied the grinding equipment in the field. AMM studied the archaeobotanical context. Discussion and conclusion are due to all authors. We thank all Libyan authorities for their help and support. We warmly thank the following colleagues: Stefano Biagetti and Emanuele Cancellieri for their support; Francesca Tuccillo, Diego Belotti and Andrea Mazzochin for their contribution to chemical analyses; and Italo Campostrini for SEM-EDX observation. Our warmest thanks to Sara Giovannetti for the photographic documentation. We wish to warmly thank the two anonymous reviewers who commented on a previous draft of the manuscript and greatly improved the present version of the paper.

Conflict of interest

The authors declare no conflict of interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Savino di Lernia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Main features of the archaeological assemblage showing traces of colour from Takarkori rock shelter (SW Libya). Authors: SDL, MG, GP (XLS 77 kb)

Supplementary Text 1

Methods of chemical analysis. Authors: SB, IC, VG (DOC 41 kb)

Supplementary Text 2

Wood identification. Author: AMM (DOCX 18 kb)

Supplementary Fig. 1

FTIR spectrum of a dark reddish brown lump (sample L20). Authors: SB, IC, VG (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

di Lernia, S., Bruni, S., Cislaghi, I. et al. Colour in context. Pigments and other coloured residues from the Early-Middle Holocene site of Takarkori (SW Libya). Archaeol Anthropol Sci 8, 381–402 (2016). https://doi.org/10.1007/s12520-015-0229-4

Download citation

Keywords

  • Holocene
  • Sahara
  • Pigments
  • Foragers
  • Herders
  • Chemical analyses