Skip to main content
Log in

A new approach to determine the geological provenance of variscite artifacts using the P/Al atomic ratios

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The procurement and exchange of variscite was an important part of Iberian 4th-to-2nd millennia political economy. For decades, archaeologists have sought to chemically characterize variscite deposits. However, these studies have met with limited success due to intrinsic limitations of trace element analyses of compositionally complex minerals such as aluminophosphates. Previous works by the author bring about a new approach to variscite provenance based on P/Al atomic ratio (Odriozola et al., J Archaeol Sci 37(12):3146–3157, 2010b). The goal of this research is to develop a solid technique to track archaeological variscite artifacts procurement areas using energy-dispersive X-ray fluorescence spectrometry (EDX), supported by X-ray diffraction (XRD) mineralogical identification and refined by magic angle spinning-nuclear magnetic resonance (MAS-NMR) structural characterization. The MAS-NMR analysis of the local structure of aluminum and phosphorus in natural aluminophosphates, show that sources and beads have two crystallographic sites for phosphorus and one for aluminum supporting that some Iberian green aluminophosphates may be considered anionic framework aluminophosphate crystals where the presence of phosphate (Q4) and hydroxyl groups linked to phosphorus (Q3) as in H2PO4 anions make P/Al atomic ratio vary from unity. Therefore, the P/Al atomic ratio can be used to characterize variscite deposits, thus allowing us to link variscite artifacts to prehistoric mines. The method is tested for eight variscite mines successfully in defining provenance regions; and 19 artifacts analyzed from eight sites in Iberia fell into several distribution patterns of characterized source regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arribas A, Galán E, Martín-Pozas JM, Nicolau J, Salvador P (1971) Estudio mineralógico de la variscita de Palazuelo de las Cuevas, Zamora (España). Studia Geologica II:115–132

    Google Scholar 

  • Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-ray fluorescence analysis. Springer

  • Bennett JM, Dytrych WJ, Pluth JJ, Richardson JW Jr, Smith JV (1986) Structural features of aluminophosphate materials with AlP = 1. Zeolites 6(5):349–360

    Article  Google Scholar 

  • Blackwell CS, Patton RL (1988) Solid-state NMR of silicoaluminophosphate molecular-sieves and aluminophosphate materials. J Phys Chem 92(13):3965–3970

    Article  Google Scholar 

  • Blanco Majado J, López Alonso MA, Edo M, Fernández Turiel JL (1995) Estudio de determinación mineralógica y de composición química de las cuentas de collas de calíta y otras materias primas del yacimiento de Las Peñas (Quiruelas de Vidriales, Zamora). Rubricatum 1:227–237

    Google Scholar 

  • Blasco A, Edo M, Villalba MJ (1990-1991) Les perles en callaïs du sud de la France proviennent-elles des mines de Can Tintorer ? Archéologie en Languedoc Congrès Hommage au Dr Jean Arnal. Colloque Int (20/09/1990):279–289

  • Bleam WF, Pfeffer PE, Frye JS (1989) P-31 and Al-27 solid-state nuclear magnetic-resonance study of taranakite. Phys Chem Miner 16(8):809–816

    Article  Google Scholar 

  • Brosheer JC, Lenfesty FA, Anderson JF Jr (1954) Solubility in the system aluminum phosphate–phosphoric acid–water. J Am Chem Soc 76:5951–5956

    Article  Google Scholar 

  • Calas G, Galoisy L, Kiratisin A (2005) The origin of the green color of variscite. Am Mineral 90:984–990

    Article  Google Scholar 

  • Camprubi A, Costa F, Melgarejo JC (1994) Mineralizaciones de fosfátos férricos-alumínicos de GAVÀ (Catalunya): tipología. Bol Geol Minero 105(5):444–453

    Google Scholar 

  • Cheetham AK, Férey G, Loiseau T (1999) Open-framework inorganic materials. Angew Chem Int Ed 38(22):3268–3292

    Article  Google Scholar 

  • Chung F (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix-flushing method for quantitative multicomponent analysis. J Appl Crystallogr 7(6):519–525

    Article  Google Scholar 

  • Dominguez Bella S (2004a) Raw materials in the Neolithic–Aeneolithic of the Iberian Peninsula. Slovak Geol Mag 10(1–2):147–152

    Google Scholar 

  • Dominguez Bella S (2004b) Variscite, a prestge mineral in the Neolithic–Aneolithic Europe. Raw material sources and possible distribution routes. Slovak Geol Mag 10(1–2):147–152

    Google Scholar 

  • Dominguez Bella S, Boveda MJ (2011) Variscita y ámbar en el Neolítico gallego. Análisis arqueométrico del collar del túmulo 1 de Chousa Nova, Silleda (Pontevedra, España). Trabajos Prehist 68(2):369–380

    Article  Google Scholar 

  • Drüppel K, Hösch A, Franz G (2007) The system Al2O3–P2O5–H2O at temperatures below 200 °C: experimental data on the stability of variscite and metavariscite AlPO4·2H2O. Am Mineral 92:1695–1703

    Article  Google Scholar 

  • Duffy S, Vanloon G (1995) Investigations of aluminum hydroxyphosphates and activated-sludge by Al27 and P31 MAS NMR. Can J Chem-Rev Can Chim 73(10):1645–1659

    Article  Google Scholar 

  • Edo M, Fernández Turiel JL (1997) Las cuentas de collar de calaita del dolmen del Prado de las Cruces. Bernuy-Salinero (Ávila). In: Fabián García JF (ed) El dolmen del Prado de las Cruces. Bernuy-Salinero (Ávila). Junta de Castilla y León, Valladolid

  • Edo M, Blasco A, Villalba MJ (1990) approche de la carte de distribution de la variscite de can Tintorer, Gavà (Catalogne). Cah Quat 17:287–298

    Google Scholar 

  • Edo M, Blasco A, Villalba MJ, Gimeno D, Fernández Turiel JL, Plana F (1995) La caracterización de la variscita del complejo minero de Can Tintorer, una experiencia aplicada al conocimiento del sistema de bienes de prestigio durante el neolítico. In: Bernabeu J, Orozco Köhler T, Terradas X (eds) Los recursos abióticos en la Prehistoria. Caracterización, aprovisionamiento e intercambio. Universitat de Valencia, pp 83–110

  • Edo M, Fernández Turiel JL, Villalba MJ, Blasco A (1998) La calaíta en el cuadrante NW de la Península Ibérica. In: Balbín Behrmann Rd, Bueno Ramírez P (eds) II Congreso Ibérico de Arqueología Peninsular: II. Neolítico, Calcolítico y Bronce. pp 99–121

  • Forestier FH, Lasnier В, L’Helgouach J (1973a) Découverte de minyulite en échantillons spectaculaires, de wavellite et de variscite dans les phtanites siluriens près de Pannecé (Loire- Atlantique). Bull Soc Minéral Cristallogr 96:67–71

    Google Scholar 

  • Forestier FH, Lasnier В, L’Helgouach J (1973b) À propos de la “callaïs”, découverte d’un gisement de variscite à Pannecé (Loire-Atlantique), analyse de quelques “perles vertes” néolithiques. Bull Soc Préhist Française 70(6):173–180

    Article  Google Scholar 

  • Frost RL, Weier ML, Erickson KL, Carmody O, Mills SJ (2004) Raman spectroscopy of phosphates of the variscite mineral group. J Raman Spectrosc 35(12):1047–1055

    Article  Google Scholar 

  • Hayashi S (1994) High-resolution solid-state NMR studies on ceramics original research article. Ann Rep NMR Spectrosc 28:29–90

    Article  Google Scholar 

  • Herbault F, Querré G (2004) La parure néolithique en variscite dans le sud de l’Armorique. Bull Soc Préhist Française 101(3):497–520

    Article  Google Scholar 

  • Hinedi ZR, Chang AC, Yesinowski JP (1989) P-31 magic angle spinning nuclear magnetic-resonance of waste-water sludges and sludge-amended soil. Soil Sci Soc Am J 53(4):1053–1056

    Article  Google Scholar 

  • Hunger S, Cho H, Sims JT, Sparks DL (2004) Direct speciation of phosphorus in alum-amended poultry litter: solid-state P-31 NMR investigation. Environ Sci Technol 38(3):674–681

    Article  Google Scholar 

  • Jiménez Gómez MC (1995) Zambujal. Los amuletos de las campañas 1964 hasta 1973. In: Sangmeister E, Jiménez Gómez MC (eds) Zambujal: Kupferfunde aus den Grabungen 1964 bis 1973 — Los amuletos de las campañas 1964 hasta 1973. Philipp von Zabern, Mainz am Rhein, pp 155–238

  • Kim J, Simon AW, Mayer JW, Wilkens B (2003) Proton-induced x-ray emission analysis of turquoise artefacts from Salado Platform Mound sites in the Tonto Basin of central Arizona. Meas Sci Technol 14:1579–1589

    Article  Google Scholar 

  • Klein J, Ushio M, Burrell LS, Wenslow B, Hem SL (2000) Analysis of aluminum hydroxyphosphate vaccine adjuvants by Al-27 MAS NMR. J Pharm Sci 89(3):311–321

    Article  Google Scholar 

  • Kniep R (1986) Orthophosphates in the ternary system Al2O3–P2O5–H2O. Angew Chem Int Ed Engl 25(6):525–534

    Article  Google Scholar 

  • Kuhn SL, Stiner MC (2007) Body ornamentation as information technology: towards an understanding of the significance of early beads. In: Mellards P, Boyle K, Bar-Yosef O, Stringer C (eds) Rethinking the human revolution. McDonald Institute for Archaeological Research, Exeter, pp 45–54

  • Kuhn S, Stiner MC, Reese DS, Gulec E (2001) Ornaments of the earliest Upper Palaeolithic. Proc Natl Acad Sci U S A 98(13):7641–7646

    Article  Google Scholar 

  • Kunwar AC, Thompson AR, Gutowsky HS, Oldfield E (1984) Solid-state Al-27 NMR studies of tridecameric Al-OxO-hydroxy clusters in basic aluminum selenate, sulfate, and the mineral zunyite. J Magn Reson 60(3):467–472

    Google Scholar 

  • Lambert JB, Shawl CE, Stearns JA (2000) Nuclear magnetic resonance in archaeology. Chem Soc Rev 29:175–182

    Article  Google Scholar 

  • Larsen ES (1942a) The mineralogy and paragenesis of the variscite nodules from Near Fairfield, Utah, part 1. Am Mineral 27:281–300

    Google Scholar 

  • Larsen ES (1942b) The mineralogy and paragenesis of the variscite nodules from Near Fairfield, Utah, part 2. Am Mineral 27:350–372

    Google Scholar 

  • Larsen ES (1942c) The mineralogy and paragenesis of the variscite nodules from Near Fairfield, Utah, part 3. Am Mineral 27:441–451

    Google Scholar 

  • Massé R (1971) Découvert de minyulite, wavellite et variscite dans les phtanites de Pannecé. Bull Soc Sci Nat Ouest France LXIX:12–15

    Google Scholar 

  • Mata JM, Plana F, Traveria A (1983) Estudio mineralógico del yacimiento de fosfatos de Gavà. Bol Soc Esp Mineral 7:257–258

    Google Scholar 

  • Moro MC (1988) Las mineralizaciones de variscita de la provincia de Zamora. Bol Inf Diputación Zamora 34:33–36

    Google Scholar 

  • Moro MC, Gil-Agero M, Montero JM, Cembranos Pérez ML, Fernández Fernández A, Hernández Sanchez E (1992) Características de las mineralizaciones de variscita asociadas a los materiales silúricos del Sinforme de Terena, Encinasola (Provincia de Huelva). Comparación con las de la provincia de Zamora. Bol Soc Esp Mineral 15:79–89

    Google Scholar 

  • Moro MC, Cembranos Pérez ML, Fernández Fernández A (1995a) Estudio mineralógico de las variscitas y turquesas silúricas de Punta Corveiro (Pontevedra, Españ). Geogaceta 18:176–179

    Google Scholar 

  • Moro MC, Gil-Agero M, Cembranos Pérez ML, Pérez del Villar L, Fernández Fernández A (1995b) Las mineralizaciones estratiformes de variscita (Aluminofosfatitas) silúricas de los Sinformes de Alcañices (Zamora) y Terena (Huelva)(España). Bol Geol Minero 106(3):233–249

    Google Scholar 

  • Müller D, Jahn E, Ladwig G, Haubenreisser U (1984) High-resolution solid-state 27Al and 31P NMR: correlation between chemical shift and mean Al–O–P angle in AlPO4 polymorphs. Chem Phys Lett 109(4):332–336

    Article  Google Scholar 

  • Muller D, Gessner W, Samoson A, Lippmaa E, Scheler G (1986) Solid-state Al27 nuclear-magnetic-resonance chemical-shift and quadrupole coupling data for condensed AlO4 tetrahedra. J Chem Soc Dalton Trans 6:1277–1281

    Article  Google Scholar 

  • Murillo-Barroso M, Martinón-Torres M (2012) Amber sources and trade in the prehistory of the Iberian Peninsula. Eur J Archaeol 15

  • Odriozola CP, García Sanjuán L (2012) Las cuentas de collar de piedra verde de Matarrubilla (Valencina de la Concepción, Sevilla). In: García Sanjuán L, Vargas Jiménez JM, Hurtado Pérez V, Ruíz Moreno T, Cruz-Auñón Briones R (eds) El asentamiento prehistórico de Valencina de la Concepción (Sevilla). Investigación y tutela en el 150 aniversario del descubrimiento de la Pastora. Universidad de Sevilla, Sevilla, pp 485–494

  • Odriozola CP, Linares Catela JA, Hurtado V (2010a) Perdigões green beads provenance analysis. Apontamentos Arq Patrimonio 6:47–51

    Google Scholar 

  • Odriozola CP, Linares Catela JA, Hurtado V (2010b) Variscite source and source analysis: testing assumptions at Pico Centeno (Encinasola, Spain). J Archaeol Sci 37(12):3146–3157

    Article  Google Scholar 

  • Odriozola CP, Mataloto R, Moreno-García J, Villalobos García R, Martínez-Blanes JM (2013) Producción y circulación de rocas verdes y sus productos en el sw peninsular: el caso de Anta Grande do Zambujeiro. Estud Arqueol Oeiras 19:125–142

    Google Scholar 

  • Pétrequin P, Cassen S, Errera m, Klassen L, Sheridan A, Pétrequin AM (eds) (2011) JADE. Grandes haches alpines du Néolithique européen, Ve et IVe millénaires av. J.-C, vols. I & II. Collection Les cahiers de la MSHE Ledoux n°17. Série Dynamiques territoriales n°6, vol 1224. Presses Universitaires de Franche-Comté, Besançon

  • Pétrequin P, Cassen S, Errea M, Klassen L, Sheridan A, Pétrequin AM (eds) (2012) JADE. Grandes haches alpines du Néolithique européen. V et IV millénaires av. J.-C. Presses universitaires de Franche-Comté, Besançon

  • Querré G, Herbault F, Calligaro T (2008) Transport of Neolithic variscites demonstrated by PIXE analysis. X-Ray Spectrom 37:116–120

    Article  Google Scholar 

  • Rojo Guerra MA, Delibes de Castro G, Edo M, Fernández Turiel JL (1995) Adornos de Calaíta en los ajuares dolménicos de la provincia de Burgos: apuntes sobre su composición y procedencia. Rubricatum 1:239–250

    Google Scholar 

  • Roncal-Herrero T (2009) Processus contrôlant les concentrations des phosphates dans les eaux naturelles. Université Toulouse III

  • Salvador P, Fayos J (1972) Some aspects of the structural relationship between “meshbach-Type” and “Lucin-Type” variscites. Am Mineral 57:36–44

    Google Scholar 

  • Schuhmacher TX, Cardoso JL, Banerjee A (2009) Sourcing African ivory in Chalcolithic Portugal. Antiquity 83(322):983–997

    Article  Google Scholar 

  • Thomas J (2011) Fashioning identities, forging inequalities: Late Neolithic/Copper Age personal ornaments of the Portuguese Estremadura. Eur J Archaeol 14(1–2):1–2

    Google Scholar 

  • Tricot G, Coillot D, Creton E, Montagne L (2008) New insights into the thermal evolution of aluminophosphate solutions: a complementary XRD and solid state NMR study. J Eur Ceram Soc 28(6):1135–1141

    Article  Google Scholar 

  • Tuel A, Gramlich V, Baerlocher C (2001) Synthesis, crystal structure and characterization of AP2DAO, a new layered aluminophosphate templated by 1,8-diaminooctane molecules. Micropor Mesopor Mater 47(2–3):217–229

    Article  Google Scholar 

  • Valera AC, Lago M, Shaw Evangelista L (2002) Ambientes funerários no complexo arqueológico dos Perdigões: uma análise preliminar do contexto das prácticas funerarias Calcolíticas no Alentejo. ERA-Arqueologia 4:85–105

    Google Scholar 

  • Vázquez-Varela JM (1975) Cuentas de “calaíta” en la Península Ibérica. Datos para la revisión del problema. Gallaecia 1:25–30

    Google Scholar 

  • Vilaca R, Beck CW, Stout EC (2002) Provenience analysis of prehistoric amber artifacts in Portugal. Madrider Mittelungen:61–78

  • Villalba MJ (2002) Le gîte de variscite de Can Tintorer: production, transformation et circulation du minéral vert. In: Guilaine J (ed) Matériaux, productions, circulations du Neolithique à l’Age du Bronze. Séminaire du Collège du France Errance, Paris, pp 115–130

    Google Scholar 

  • Villalba MJ, Edo M, Blasco A (1991a) Zone d’influence de la callais de Can Tintorer. In: Actes du colloque International de Nemours 1989, vol 4. Mémoires du Musé de Préhistoire d’Ile-de-France, Paris, pp 281–287

  • Villalba MJ, Edo M, Blasco A (1991b) Zone d’influence de la callaïs de Can Tintorer. In: Identité du Chasséen. Actes du Colloque International de Nemours 1989. Memoires du Musée de Prehistoire d’Ille de France 4, Paris, pp 281–287

  • Villalba MJ, Edo M, Blasco A (1998) Explotación, manufactura, distribución y uso como bien de prestigio de la calaita en el Neolítico. El ejemplo del complejo minero de Can Tintorer. Studia Archaeologica 88:41–70

    Google Scholar 

  • Weigand PC, Harbottle G, Sayre EV (1977) Turquoise source and source analysis: Mesoamerica and the Southwestern U.S.A. In: Exchange systems in prehistory. Academic Press, New York, pp 15–34

  • Willing M, Stöcklmayer S, Wells M (2008) Ornamental variscite: a new gemstone resource from Western Australia. J Gemmol 31(3/4):111–124

    Article  Google Scholar 

  • Wright K, Garrard A (2003) Social identities and the expansion of stone bead-making in Neolithic Western Asia: new evidence from Jordan. Antiquity 77(296):267–284

    Article  Google Scholar 

  • Yu J, Xu R (2003) Rich structure chemistry in the aluminophosphate family. Acc Chem Res 36(7):481–490

    Article  Google Scholar 

  • Yu J, Xu R, Li J (2000) Structural diversity of a family of aluminophosphates with Al/P ratio of non-unity. Solid State Sci 2(2):181–192

    Article  Google Scholar 

  • Zhou D, Chen L, Yu J, Li Y, Yan W, Deng F, Xu R (2005) Synthesis, crystal structure, and solid-state NMR spectroscopy of a new open-framework aluminophosphate (NH4)2Al4(PO4)4(HPO4)·H2O. Inorg Chem 44(12):4391–4397

    Article  Google Scholar 

  • Zhou D, Xu J, Yu J, Chen L, Deng F, Xu R (2006) Solid-atate NMR spectroscopy of anionic framework aluminophosphates: a new method to determine the Al/P ratio. J Phys Chem B 110(5):2131–2137

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Ministerio de Economía y Competitividad (MINECO) for the financial support (HAR2012-34620) and the Ministerio de Ciencia e Innovación (MICIN) for a postdoctoral Grant under the program Juan de la Cierva (JCI-2011-10491). Special thanks go to Concepción Blanco and Corina Liessau (Universidad Autónoma de Madrid), Antonio Carlos Valera (ERA-Arqueología) and Michael Kunts (Deutsche Archäeologisches Institut) for providing many of the archaeological samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos P. Odriozola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odriozola, C.P. A new approach to determine the geological provenance of variscite artifacts using the P/Al atomic ratios. Archaeol Anthropol Sci 7, 329–350 (2015). https://doi.org/10.1007/s12520-014-0195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-014-0195-2

Keywords

Navigation