Combined Raman spectroscopic and Rietveld analyses as a useful and nondestructive approach to studying flint raw materials at prehistoric archaeological sites

  • C. Capel Ferrón
  • L. León-Reina
  • S. Jorge-Villar
  • J. M. Compaña
  • M. A. G. Aranda
  • J. T. López Navarrete
  • V. Hernández
  • F. J. Medianero
  • J. Ramos
  • G.-C. Weniger
  • S. Domínguez-Bella
  • J. Linstaedter
  • P. Cantalejo
  • M. Espejo
  • J. J. Durán Valsero
Original Paper

Abstract

A set of six lithic tools, unearthed along 2011 in two karst sites of the Guadalteba County (Málaga, Spain), has been nondestructively investigated by Raman spectroscopy and laboratory x-ray diffraction. From a chemist’s point of view, our goal is to develop a systematic screening protocol for a quick, easy, low cost and nondestructive characterization of archaeological flints based on Raman spectroscopy, x-ray diffraction and Rietveld refinement. In this paper, we firstly made use of Raman spectroscopy to determine, in a semiquantitative way, but with the generic advantage of a faster data acquisition than x-ray diffraction, the surface content of moganite of each lithic tool, from the ratio between the relative intensities of the two Raman-active symmetric stretching vibrations (A1 modes) of α-quartz (465 cm−1) and moganite (501 cm−1). The precise bulk quartz/moganite weight content was then accurately quantified by means of high-quality x-ray diffraction, followed by Rietveld refinement. We found a general good correlation between Raman and x-ray data. Nonetheless, as recently reported in the scientific literature by other authors, the vibrational spectroscopic quantification of moganite in silica rocks like flint and chert have to be performed very cautiously, to avoid undesired interferences from other Raman features due to the eventual presence of silanol (SiOH) groups, which could finally lead to an overestimation of the surface moganite concentration. As reported in such a recent article, a useful treatment to reduce the interference from silanol-bands is to heat the samples prior to their Raman analysis at a minimum of 600 ºC (but better at 700 or 800 ºC) for silanol “dehydration”. This, in our opinion, may be for sure a satisfactory procedure when studying flint or chert samples of a “geological origin”. But not of practical use when studying lithic tools which were manufactured by men thousands and thousands of years ago.

Keywords

Raman spectroscopy X-ray diffraction Rietveld analysis Quartz Moganite Archaeometry Lithic tools Flint 

References

  1. Bustillo MA (2001) Aparición y significado de la moganita en las rocas de la sílice: una revisión. J Sediment Res 71:436–443CrossRefGoogle Scholar
  2. Bustillo MA, Pérez-Jiménez JL, Fort R (2007) Deterioro de Sílex en Canteras Históricas y Muestras Líticas. MACLA 7:18Google Scholar
  3. Bustillo MA, Pérez-Jiménez JL, Alonso-Zarza AM, Furio M (2012) Moganite in the Chalcedony varieties of continental cherts (Miocene, Madrid Basin, Spain). Spectrosc Lett 45:109–113CrossRefGoogle Scholar
  4. Carbonell E, Márquez B, Mosquera M, Olí A, Rodríguez XP, Sala R, Vergés JM (1999) “El Modo 2 en Galería. Análisis de la industria lítica y sus procesos técnicos” in Atapuerca: ocupaciones humanas y paleoecología del yacimiento de Galería, ed. Junta de Castilla y León, Consejería de Educación y Cultura, Valladolid, 1st edn., 390Google Scholar
  5. Clark G (1998) World prehistory: in new perspective, 3rd edn. Cambridge University Press, New York, ISBN: 052129178XGoogle Scholar
  6. Flörke OW, Jones JB, Schmincke HU (1976) A new microcrystalline silica from Gran Canaria. Z Kristallogr 143:156–165Google Scholar
  7. Frondel C (1962) The system of mineralogy, vol. III: silica minerals. Wiley, New YorkGoogle Scholar
  8. Gliozzo E, Grassi N, Bonanni P, Meneghini C, Tomei MA (2011) Gemstones from Vigna Barberini at the Palatine Hill (Rome, Italy). Archaeometry 53:469–489CrossRefGoogle Scholar
  9. Götze J, Nasdala L, Kleeberg R, Wenzel RM (1998) Occurrence and distribution of “moganite” in agate/chalcedony: a combined micro-Raman, Rietveld and cathodoluminescence study. Contrib Mineral Petrol 133:96–105CrossRefGoogle Scholar
  10. Graetsch HA, Grünberg JM (2012) Microstructure of flint and other chert raw materials. Archaeometry 54:18–36CrossRefGoogle Scholar
  11. Gutiérrez Mas JM, Martín Algarra A, Domínguez-Bella S, Moral JP (1991), Introducción a la Geología de la provincia de Cádiz, Ed. University of Cádiz, ISBN: 978-84-7786-050-1Google Scholar
  12. Heaney PJ (1995) Moganite as an indicator for vanished evaporites: a testament reborn? J Sediment Res A65:633–638Google Scholar
  13. Heaney PJ, Post JE (1992) The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 255:441–443CrossRefGoogle Scholar
  14. Heaney PJ, Post JE (2001) Evidence for an I2/a to Imab phase transition in the silica polymorph moganite at 570 K. Am Mineral 86:1358–1366Google Scholar
  15. Hernández V, Jorge-Villar SE, Capel Ferrón C, Medianero FJ, Ramos J, Weniger GC, Domínguez-Bella S, Linstaedter J, Cantalejo P, Espejo M, Durán Valsero JJ (2012) Raman spectroscopy analysis of Palaeolithic industry from Guadalteba terrace river, Campillos (Guadalteba county Southern of Iberian Peninsula. J Raman Spec 43:1651–1657CrossRefGoogle Scholar
  16. Jambor JL, Burke EAJ, Grew ES, Puziewicz J (1993) New mineral names. Am Mineral 78:672–678Google Scholar
  17. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273Google Scholar
  18. Laplace G (1975) La typologie analytique et structurale: Base rationnelle d’étude des industries lithiques et osseuses. Colloques Nationaux du Centre National de la Reserche Scientifique, Ed. CNRS, Marseille, 932: 91-141Google Scholar
  19. Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAURGoogle Scholar
  20. Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Cryst B51:929–939CrossRefGoogle Scholar
  21. Medianero FJ, Ramos J, Palmqvist P, Weniger GC, JRiquelme JA, Espejo M, Cantalejo P, Aranda A, Pérez-Claros JA, Figueirido B, Espigares P, Ros-Montoya S, Torregrosa V, Linstädter L, Cabello L, Becerra S, Ledesma P, Mevdev I, Castro A, Romero M, Martínez-Navarro B (2011) The karst site of Las Palomas (Guadalteba County, Málaga, Spain): a preliminary study of its Middle–Late Pleistocene archaeopaleontological record. Quatern Int 243:127–136CrossRefGoogle Scholar
  22. Olivares M, Tarriño A, Murelaga X, Baceta JI, Castro K, Etxebarria N (2009) Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. Spectrochim Acta A 73:492–497CrossRefGoogle Scholar
  23. Pretola JP (2001) A feasibility study using silica polymorph ratios for sourcing chert and chalcedony lithic materials. J Archaeol Sci 28:721–739CrossRefGoogle Scholar
  24. Schmidt P, Bellot-Gurlet L, Slodczyk A, Fröhlich F (2012) A hitherto unrecognised band in the Raman spectra of silica rocks: influence of hydroxylated Si–O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO2). Phys Chem Minerals 39:455–464CrossRefGoogle Scholar
  25. Schmidt P, Bellot-Gurlet L, Léa V, Sciau P (2013) Moganite detection in silica rocks using Raman and infrared spectrocopy. Eur J Mineral 25(5):797–805CrossRefGoogle Scholar
  26. Tarriño A, Olivares M, Etxebarria N, Baceta JI, Larrasoaña JC, Yusta I, Pizarro JL, Cava A, Barandiarán I, Murelaga X (2007) El sílex de tipo “Urbasa” Caracterización petrológica y geoquímica de un marcador litológico en yacimientos arqueológicos del Suroeste europeo durante el Pleistoceno superior y Holoceno inicial. Geogaceta 43:127–130Google Scholar
  27. Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst 20:79–83CrossRefGoogle Scholar
  28. Vallespí E (1986), El Paleolítico inferior y medio en Andalucía in Homenaje a Luis Siret (1934–1984). Ed. Junta de Andalucía, Consejería de Cultura, pp. 59-66. ISBN: 84-505-3511-5Google Scholar
  29. Vallespí E (1986), Cultura de las graveras y comienzos del Achelense Ibérico in Estudios en homenaje al Dr. Antonio Beltrán Martínez, Ed. University of Zaragoza, Zaragoza, pp. 147–157. ISBN: 84-600-4366-5Google Scholar
  30. Vallespí E (1992) Las industrias Achelenses de Andalucía: Ordenación y Comentarios. SPAL 1:61–78CrossRefGoogle Scholar
  31. Will G, Bellotto M, Parrish W, Hart M (1988) Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J Appl Cryst 21:182–191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Capel Ferrón
    • 1
  • L. León-Reina
    • 2
  • S. Jorge-Villar
    • 3
    • 4
  • J. M. Compaña
    • 5
  • M. A. G. Aranda
    • 5
  • J. T. López Navarrete
    • 6
  • V. Hernández
    • 6
  • F. J. Medianero
    • 7
  • J. Ramos
    • 8
  • G.-C. Weniger
    • 9
  • S. Domínguez-Bella
    • 10
  • J. Linstaedter
    • 11
  • P. Cantalejo
    • 12
  • M. Espejo
    • 12
  • J. J. Durán Valsero
    • 13
  1. 1.Laboratorio de Espectroscopía Vibracional, Servicios Centrales de Apoyo a la InvestigaciónUniversidad de MálagaMálagaSpain
  2. 2.Laboratorio de Difracción de rayos-X, Servicios Centrales de Apoyo a la InvestigaciónUniversidad de MálagaMálagaSpain
  3. 3.Área de Geodinámica Interna, Facultad de Humanidades y EducaciónUniversidad de BurgosBurgosSpain
  4. 4.National Research Center on Human Evolution (CENIEH)BurgosSpain
  5. 5.Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de MálagaMálagaSpain
  6. 6.Departamento de Química Física, Facultad de CienciasUniversidad de MálagaMálagaSpain
  7. 7.Escuela Taller de Peñarrubia, Consorcio GuadaltebaMálagaSpain
  8. 8.Área de Prehistoria, Facultad de Filosofía y LetrasUniversidad de CádizCádizSpain
  9. 9.Stiftung Neanderthal MuseumMettmanGermany
  10. 10.Departamento de Ciencias de la TierraUniversidad de CádizCádizSpain
  11. 11.Institute of Prehistoric ArchaeologyUniversity of CologneCologneGermany
  12. 12.Red Patrimonio Guadalteba, Consorcio GuadaltebaMálagaSpain
  13. 13.Instituto Geológico y Minero de España (IGME)MadridSpain

Personalised recommendations