Advertisement

Archaeological and Anthropological Sciences

, Volume 9, Issue 8, pp 1571–1583 | Cite as

Buried soils in the context of geoarchaeological research—two examples from Germany and Ethiopia

  • Dana PietschEmail author
  • Peter Kühn
Original Paper

Abstract

Pedology is a discipline with a wide range of applications in geology, geomorphology, archaeology, geoarchaeology and geography. Especially paleopedology aims are to answer questions about climatic changes, rates of pedogenic processes, pedostratigraphy, suitability of former surface soils and human occupation. In combination to other disciplines, pedology aims to advance geoscientific methods at different scales, and during the last decades, (paleo)pedological research increasingly touched archaeological fields whereby soil research was mostly somehow included in geoarchaeology. When the term ‘archaeopedology’ was introduced in the 1940s, researchers were already aware of the importance of the subject ‘soil’ as being a key figure when answering questions of site formation history, cultural chronology and environmental change. The present paper aims to reintroduce this term to the scientific community and to accentuate the importance of buried soils within geoarchaeological research. Shown by two different studies, one from Upper Palaeolithic sites in the Ueckermünder Heide/Germany and one from ancient Yeha/Ethiopia the archaeopedological approach highlights the importance of pedological research on- and off-site excavations by clearly bridging a gap between archaeology, geoarchaeology and (paleo)pedology.

Keywords

Archaeopedology Upper Palaeolithicum Mesolithicum Ancient period Ueckermünder Heide/Germany Yeha/Ethiopia 

Notes

Acknowledgements

We thank the German Archaeological Institute (DAI), especially Dr. Iris Gerlach for support of fieldwork in Yeha, and Dr. Christian Bogen and Dr. Knut Kaiser for many discussions in NE Germany. Finally, we also thank two unknown reviewers for their helpful comments.

References

  1. Adams JS, Kraus MJ, Wing SL (2011) Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeogr Palaeoclimatol Palaeoecol 309:358–366CrossRefGoogle Scholar
  2. Ad-Hoc-AG Boden (2005) Bodenkundliche Kartieranleitung (KA5). Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  3. Anikovich MV, Sinitsyn AA, Hoffecker JF, Holliday VT, Popov VV, Lisitsyn SN, Forman SL, Levkovskaya GM, Pospelova GA, Kuz’mina IE, Burova ND, Goldberg P, Macphail RI, Giaccio B,Praslov ND (2007) Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315: 223–226 Google Scholar
  4. Barboni D, Bonnefille R, Alexandre A, Meunier JD (1999) Phytoliths as palaeoenvironmental indicators, West Side Middle Awash valley. Ethiop Palaeogeog Palaeoclimatol Palaeoecol 152(1–2):87–100CrossRefGoogle Scholar
  5. Bard KA, Coltorti M, DiBlasi M, Dramis F, Fattovich R (2000) The environmental history of Tigray (Northern Ethiopia) in the Middle and Late Holocene: a preliminary outline. Afr Archaeol Rev 17(2):65–86CrossRefGoogle Scholar
  6. Blume H-P, Deller B, Leschber RA, Paetz S, Schmidt S, Wilke B-M (eds) (2000) Handbuch der Bodenuntersuchungen. Terminologie, Verfahrensvorschriften und Datenblätter. Physikalische, chemische, biologische Untersuchungsverfahren. Gesetzliches Regelwerk – Grundwerk. Wiley- VCH- Beuth, BerlinGoogle Scholar
  7. Bogen C, Hilgers A, Kaiser K, Kühn P, Lidke G (2003) Archäologie, Pedologie und Geochronologie Spätpaläolithischer Fundplätze in der Ueckermünder Heide (Mecklenburg Vorpommern). Archäologisches Korrespondenzblatt 33:1–20Google Scholar
  8. Bork HR (1989) Soil erosion during the past Millennium in Central Europe and its significance within the geomorphodynamics of the Holocene. In: Ahnert F (ed) Landforms and landform evolution in West Germany. Catena Suppl 15:121–131Google Scholar
  9. Bos JAA, Janssen CR (1996) Local impact of Palaeolithic manon the environment during the end of the Last Glacial in the Netherlands. J Archaeol Sci 23:731–739CrossRefGoogle Scholar
  10. Bronk-Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360Google Scholar
  11. Bullard RG (1985) Sedimentary environments and lithologic materials at two archaeological sites. In: Rapp G, Gifford J (eds) Archaeological geology, Yale University Press, New HavenGoogle Scholar
  12. Butzer CW (1981) Rise and fall of Axum, Ethiopia: a geo-archaeological interpretation. Am Antiq 46(3):471–495CrossRefGoogle Scholar
  13. Butzer CW (1982) Archaeology as human ecology. Cambridge University Press, CambridgeGoogle Scholar
  14. Collins ME, Carter BJ, Hart JT, Foss JE (eds) (1995) Pedological perspectives in archaeological research. Soil Science Society of America, Madison, Spec. Publ. 44Google Scholar
  15. Cornwall IW (1958) Soils for archaeologists. Phoenix House, LondonGoogle Scholar
  16. Courty MA, Goldberg P, Macphail R (1989) Soils and micromorphology in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  17. Davidson DA, Shackley ML (eds) (1976) Geoarchaeology. Earth science and the past. Westview Press, LondonGoogle Scholar
  18. De Klerk P, Janke W, Kühn P, Theuerkauf M (2008) Environmental impact of the Laacher See eruption at large distance to the volcano: interdisciplinary studies from Vorpommern (NE Germany). Palaeogeogr Palaeoclimatol Palaeoecol 270:196–214CrossRefGoogle Scholar
  19. Denham TP, Haberle SG, Letfer C, Fullagar R, Field J, Therin M, Porch N, Winsborough B (2003) Origins of Agriculture at Kuk Swamp in the highlands of New Guniea. Science 301:189–193CrossRefGoogle Scholar
  20. Devos Y, Vrydaghs L, Degraeve, A, Fechner K (2009) An archaeopedological and phytolitarian study of the "Dark Earth" on the site of Rue de Dinant (Brussels, Belgium). Catena 78:270--284Google Scholar
  21. Dramis F, Umer M, Calderoni G, Haile M (2003) Holocene climate phases from buried soils in Tigray (Northern Ethiopia): comparison with lake level fluctuations in the Main Ethiopian Rift. Quat Res 60:274–283CrossRefGoogle Scholar
  22. Draut AE, Rubin DM, Dierker JL, Fairley HC, Griffiths RE, Hazel JE Jr, Hunter RE, Kohl K, Leap LM, Nials FL, Topping DJ, Yeatts M (2008) Application of sedimentary-structure interpretation to geoarchaeological investigations in the Colorado River Corridor, Grand Canyon, Arizona, USA. Geomorphology 101:497–509CrossRefGoogle Scholar
  23. Dreibrodt S, Nelle O, Lütjens I, Mitusov A, Clausen I, Bork H-R (2009) Investigations on buried soils and colluvial layers around Bronze Age burial mounds at Bornhöved (northern Germany): an approach to test the hypothesis of ‚landscape openness’ by the incidence of colluviation. The Holocene 19(3):487–497CrossRefGoogle Scholar
  24. Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork H-R (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 22:80–95CrossRefGoogle Scholar
  25. Eggert MKH (2005) Prähistorische Archäologie: Konzepte und Methoden, UTB, Tübingen/ BaselGoogle Scholar
  26. Emadodin I, Reiss S, Bork H-R (2011) Colluviation and soil formation as geoindicators to study long-term environmental changes. Environ Earth Sci 62:1695–1706CrossRefGoogle Scholar
  27. EMA (1988) National Atlas of Ethiopia 2 edn. Addis AbabaGoogle Scholar
  28. Eriksson MG, Olley JM, Payton RW (2000) Soil erosion history in central Tanzania based on OSL dating of colluvial and alluvial hillslope deposits. Geomorphology 36:107–128CrossRefGoogle Scholar
  29. FAO (2006) Guidelines for soil description, RomeGoogle Scholar
  30. Fattovich R (1978) Introduzione alla ceramica preaksumita di Grat Ge’al Guevri (Yeha). Ann d’Éthiopie 11:105–122Google Scholar
  31. Fechner K, Langohr R, Devos Y (2004) Archaeopedological checklists. Proposal for a simplified version for the routine archaeological record in Holocene rural and urban sites of Nord-Western Europe. In: Carver G (ed) Digging in the dirt: excavations in a new millennium. John and Erica Hedges Ltd, Oxford, pp 240–256, = British Archaeological Reports, International Series, S1256Google Scholar
  32. Ferring CR (1992) Alluvial pedology and geoarchaeological research. In: Holliday VT (ed) Soils in archaeology: landscape evolution and human occupation. Smithsonian Institution Press, Washington, pp 1–39Google Scholar
  33. Foss JE, Timpson ME, Lewis RJ (1995) Soils in alluvial sequences: some archaeological implications. Soil Science Society of America, Madison, Special Publication 44Google Scholar
  34. Fredlund GG, Tieszen LL (1997) Phytolith and carbon isotope evidence for Late Quaternary vegetation and climate change in the Southern Black Hills, South Dakota. Quat Res 47:206–217CrossRefGoogle Scholar
  35. French C (2002) Geoarchaeology in action: studies in soil micromorphology and landscape evolution. Routledge, LondonGoogle Scholar
  36. French C, Sulas F, Madella M (2009) New geoarchaeological investigations of the valley systems in the Aksum area of northern Ethiopa. Catena 78:218–233CrossRefGoogle Scholar
  37. Fuchs M, Lang A, Wagner GA (2004) The history of Holocene soil erosion in the Philious Basin, NE-Peleponese, Greece, provided by optical dating. The Holocene 14:334–345CrossRefGoogle Scholar
  38. Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM (1999) Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry 41:339–364CrossRefGoogle Scholar
  39. Gerlach J (2007) Short-term climate change and the extinction of the snail Rhachistia aldabrae (Gastropoda: Pulmonata). Biol Lett 3:581–585CrossRefGoogle Scholar
  40. Gibson A, Woods A (1997) Prehistoric pottery for the archaeologists. Leicester University Press, LondonGoogle Scholar
  41. Goldberg P, Macphail RI (2006) Practical and theoretical geoarchaeology. Carlton, MaldenGoogle Scholar
  42. Gramsch B (1973) Ein neuer Fundplatz der Ahrensburger Kultur bei Golßen, Kr. Luckau. Ausgrabungen und Funde 18:109–117Google Scholar
  43. Harrower MJ, McCorriston J, D’Andrea AC (2010) General/specific, local/global: comparing the beginnings of agriculture in the Horn of Africa (Ethiopia/Eritrea) and Southwest Arabia (Yemen). Am Antiq 75(3):452–472CrossRefGoogle Scholar
  44. Hassan FA (1978) Sediments in archaeology: methods and implications for palaeoenvironmental and cultural analysis. J Field Archaeol 5:197–213Google Scholar
  45. Hijszeler CCWJ (1957) Late-glacial human cultures in theNetherlands. Geol Mijnbouw 19:288–302Google Scholar
  46. Holliday VT (1992) Soil formation, time and archaeology. In: Holliday VT (ed) Soils in archaeology, landscape evolution and human occupation. Smithsonian Institution Press, Washington and London pp. 101–118Google Scholar
  47. Holliday VT (ed) (2004) Soils in archaeological research. Oxford University Press, New YorkGoogle Scholar
  48. Holliday VT, Gartner WG (2007) Methods of soil P analysis in archaeology. J Archaeol Sci 34:301–333CrossRefGoogle Scholar
  49. Hunt CO, Gilbertson DD, El-Rishi HA (2007) An 8000-year history of landscape, climate and copper exploitation in the Middle East: the Wadi Faynan and the Wadi Dana National Reserve in southern Jordan. J Archaeol Sci 34:1306–1338CrossRefGoogle Scholar
  50. Jagiella C, Kürschner H (1987) Atlas der Hölzer Saudi-Arabiens. Die Holzanatomie der wichtigsten Bäume und Sträucher Arabiens mit einem holzanatomischen Bestimmungsschlüssel. TAVO, Tübinger Atlas Vorderer Orient, WiesbadenGoogle Scholar
  51. Japp S, Gerlach I, Hitgen H, Schnelle M (2011) Yeha and Hawelti—cultural contacts between Saba and D’mat. New research of the German Archaeological Institute in Ethiopia. Proc Semin Arab Stud 41:1–16Google Scholar
  52. Kadereit A, Kühn P, Wagner G (2010) Holocene relief and soil changes in loess-covered areas of south-western Germany—the pedosedimentary archives of Bretten-Bauerbach (Kraichgau). Quat Int 222:99–119CrossRefGoogle Scholar
  53. Kaiser K, Clausen I (2005) Palaeopedology and stratigraphy of the Late Palaeolithic Alt Duvenstedt site, Schleswig-Holstein (Northwest Germany). Archäologisches Korrespondenzblatt 35:1–20Google Scholar
  54. Kaiser K, Barthelmes A, Czakó Pap S, Hilgers A, Janke W, Kühn P, Theuerkauf M (2006) A Lateglacial palaeosoil cover in the Altdarss area, southern Baltic Sea coast (northeast Germany): investigations on pedology, geochronology, and botany. Neth J Geosci 85:199–222Google Scholar
  55. Kaiser K, Schoch WH, Miehe G (2007) Holocene paleosols and colluvial sediments in Northeast Tibet (Qinghai Province, China): properties, dating and paleoenvironmental implications. Catena 69:91–102CrossRefGoogle Scholar
  56. Kaiser K, Hilgers A, Schlaak N, Jankowski M, Kühn P, Bussemer S, Przegiętka K (2009) Palaeopedological marker horizons in northern Central Europe: characteristics of Late glacial Usselo and Finow soils. Boreas 38:591–609CrossRefGoogle Scholar
  57. Keeley H (1981) Soil handbook for archaeologists. London: Academic Journal Offprint from—Institute of Archaeology—London 18Google Scholar
  58. Klasen N, Engel M, Brückner H, Hausleiter A, Intilia A, Eichmann R, Al-Najem MH, Al-Said SF (2011) Optically stimulated luminescence dating of the city wall system of ancient Tayma (NW Saudi Arabia). J Archaeol Sci 38(8):1818–1826CrossRefGoogle Scholar
  59. Klute A (ed) (1986) Methods of soil analysis. Part 1: physical and mineralogical methods, 2nd edn. SSSA Book Series 5. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin USAGoogle Scholar
  60. Knopf T, Baum T, Scholten T, Kühn P (2012) Erschließung vor der Landnahme? Eine archäopedologische Prospektion im mittleren Schwarzwald. Archäologisches Korrespondenzblatt 42:123–133Google Scholar
  61. Kozarski S (1988) Time and dynamics of the last Scandinavian ice sheet retreat from northwestern Poland. Geogr Pol 55:91–101Google Scholar
  62. Kühn P, Pietsch D (2013) Soil micromorphogenesis and Early Holocene palaeoclimate at the desert margin of Southern Arabia. Span J Soil Sci 3(2):59–77Google Scholar
  63. Kühn P, Pietsch D, Gerlach I (2010) Archaeopedological analyses around a Neolithic hearth and the beginning of Sabaean irrigation in the oasis of Ma’rib (Ramlat as-Sab’atayn, Yemen). J Archaeol Sci 37:1305–1310CrossRefGoogle Scholar
  64. Kühn P, Techmer A, Weidenfeller M (2013) Lower to middle Weichselian pedogenesis and palaeoclimate in Central Europe using combined micromorphology and geochemistry: the loess-palaeosol sequence of Alsheim (Mainz Basin, Germany). Quat Sci Rev 75:43–58CrossRefGoogle Scholar
  65. Lippi MM, Bellini C, Benvenuti M, Fedi M (2011) Palaeoenvironmental signals in ancient urban setting: the heavy rainfall record in Sumhuram, a pre-Islamic archaeological site of Dhofar (S Oman). The Holocene 21(6):951–965CrossRefGoogle Scholar
  66. Litt T, Brauer A, Goslar T, Merkt J, Balaga K, Müller H, Ralska-Jasiewiczowa M, Stebich M, Negendank JFW (2001) Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat Sci Rev 20:1233–1249CrossRefGoogle Scholar
  67. Marks L (2002) Last glacial maximum in Poland. Quat Sci Rev 21:103–110CrossRefGoogle Scholar
  68. Mercader J, Astudillo F, Barkworth M, Bnnett T, Esselmont C, Kinyanjui R, Grossman DL, Simpson S, Walde D (2010) Poaceae phytoliths from the Niassa Rift, Mozambique. J Archaeol Sci 37:1953–1967CrossRefGoogle Scholar
  69. Merla G, Abbate E, Azzaroli A, Bruni P, Canuti P, Fazzuoli M, Sagri M, Tacconi P (1979) A geological map of Ethiopia and Somalia (1973) 1:2,000,000. Department of Geology and Paleontology, University of Florence, ItalyGoogle Scholar
  70. MoLAS (1994) Archaeological site manual, 3rd edn. Museum of London Archaeological Service, LondonGoogle Scholar
  71. Mulholland SC, Rapp G (1992) A morphological classification of grass silica-bodies. In: Rapp G Jr, Mulholland SC (eds) Phytolith systematics: emerging issues. Plenum Press, New York, pp 65–89CrossRefGoogle Scholar
  72. Munsell Soil Color Charts (2000) Munsell Color, Grand RapidsGoogle Scholar
  73. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  74. Neumann K, Schoch W, Détienne P, Schweingruber FH (2001) Woods of the Sahara and the Sahel. An anatomical atlas. Birmensdorf, Eidgenössische Forschungsanstalt WSL, Bern, Stuttgart, WienGoogle Scholar
  75. Nikiforoff CC (1943) Introduction to paleopedology. Am J Soil Sci 241:194–200Google Scholar
  76. North F (1937) Geology for archaeologists. Acad J Offprint J Royal Archaeol Inst 94(1):73–115Google Scholar
  77. Pankhurst R (1990) A social history of Ethiopia. Institute of Ethiopian Studies, University of Addis AbabaGoogle Scholar
  78. Pasda C (2002) Archäologie einer Düne im Baruther Urstromtal bei Groß Lieskow, Stadt Cottbus. Veröffentlichungen des Brandenburgischen Landesmuseums für Ur- und Frühgeschichte 33:7–49Google Scholar
  79. Pietsch D, Kühn P (2012) Early Holocene paleosols at the southwestern Ramlat as-Sab’atayn desert margin: new climate proxies for Southern Arabia. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366:154–165CrossRefGoogle Scholar
  80. Pietsch D, Mabit L (2012) Terrace soils in the Yemen Highlands: using physical, chemical and radiometric data to assess the suitability for agriculture and the vulnerability to degradation. Geoderma 185–186:48–60CrossRefGoogle Scholar
  81. Pietsch D, Machado JM (2012) Colluvial deposits—proxies for climate change and cultural chronology. A case study from Tigray, Ethiopia. Z Geomorphol Ann Geomorphol. doi: 10.1127/0372-8854/2012/S-00114, Special Issue ‘Geomorphological systems’Google Scholar
  82. Pietsch D, Kühn P, Scholten T, Brunner U, Hitgen H, Gerlach I (2010) Holocene soils and sediments around Ma’rib Oasis, Yemen: further Sabaean treasures? The Holocene 20(5):785–799CrossRefGoogle Scholar
  83. Pietsch D, Schenk K, Japp S, Schnelle M (2013) Standardised recording of sediments in the excavation of the Sabaean town of Sirwah, Yemen. J Archaeol Sci 40(5):2430–2445CrossRefGoogle Scholar
  84. Pigati JS, Quade J, Shahanan TM, Haynesm CV Jr (2004) Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeogr Palaeoclimatol Palaeoecol 204:33–45CrossRefGoogle Scholar
  85. Piperno D (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira Press, LanhamGoogle Scholar
  86. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D, Spencer JQG (2008) Luminescence dating: basics, methods and applications. Eiszeit Gegenw (Quat Sci J) 57(1–2):95–149Google Scholar
  87. Pustovoytov K (2006) Soils and soil sediments at Goebekli Tepe, Southeastern Turkey: A preliminary report. Geoarchaeology 21(7):699–719Google Scholar
  88. Radies D, Hasiotis ST, Preusser F, Neubert E, Matter A (2005) Palaeoclimatic significance of Early Holocene faunal assemblages in wet interdune deposits of the Wahiba Sand Sea, Sultanate of Oman. J Arid Environ 62:109–125CrossRefGoogle Scholar
  89. Rapp G, Hill CL (2006) Geoarchaeology. The earth science approach to archaeological interpretation. 2nd Ed, University Press, New Haven, LondonGoogle Scholar
  90. Rayment GE, Lyons DJ (2011) Soil chemical methods—Australasia. CSIRO Publishing, CollingwoodGoogle Scholar
  91. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–1150CrossRefGoogle Scholar
  92. Retallack GJ (2001) Soils of the past. An introduction to paleopedology. Blackwell Science press, OxfordGoogle Scholar
  93. Rinterknecht VR, Marks L, Piotrowski JA, Raisbeck GM, Yiou F, Brook EJ, Clark PU (2005) Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas 34:186–191CrossRefGoogle Scholar
  94. Romans CC, Robertson L (1983) The general effects of early agriculture on the soil profile. In: Maxwell GS (ed) The impact of aerial reconnaissance on archaeology. Council for British Archaeology, York, pp 136–141, Council for British Archaeology, Research Report, 139Google Scholar
  95. Rosen AM (2001) Phytolith evidence for agro-pastoral economies in the Scythian period of southern Kazakhstan. In: Meunier JD, Coline F (eds) Phytoliths: applications in earth sciences and human history. A.A. Balkema Publishers, Netherlands, pp 183–198CrossRefGoogle Scholar
  96. Rovner I (1971) Potential of opal phytoliths for the use of paleoecological reconstruction. Quatern Res 1:343–359CrossRefGoogle Scholar
  97. Scheffer F, Meyer B (1963) Berührungspunkte der archäologischen und bodenkundlichen Forschung. Neue Ausgrabungen und Funde in Niedersachsen 1:1–18Google Scholar
  98. Schiffer MB (1972) Archaeological context and systemic. Am Antiq 37(2):156–165CrossRefGoogle Scholar
  99. Schiffer MB (1983) Toward the identification of formation processes. Am Antiq 48:675–706CrossRefGoogle Scholar
  100. Schlaak N (1993) Studie zur Landschaftsgenese im Raum Nordbarnim und Eberswalder Urstromtal. Berl Geogr Arb 76:145Google Scholar
  101. Schweingruber FH (1990) Anatomie europäischer Hölzer. Ein Atlas zur Bestimmung europäischer Baum-, Strauch- und Zwergstrauchhölzer, Verlag Paul Haupt, Bern and StuttgartGoogle Scholar
  102. Scudder SJ (2001) Sea level rise or shallow-water midden deposition? Archaeopedology at the Seminole Rest archaeological site, coastal East-Central Florida. J Archaeol Sci 30:1551–1557Google Scholar
  103. Scudder SJ, Foss JE, Collins ME (1996) Soil science and archaeology. Adv Agron 57:1–76CrossRefGoogle Scholar
  104. Sheldon ND, Tabor NJ (2009) Quantitative palaeoenvironmental and palaeoclimatic reconstruction using paleosols. Earth Sci Rev 95:1–52CrossRefGoogle Scholar
  105. Smolska E (2011) Relation between radiocarbon, archaeological dating and sediment properties on the example of colluvial deposits (NE Poland). Geochronometria 38(4):325–333CrossRefGoogle Scholar
  106. Sparks DL (ed) (1996) Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series 5. Soil Science Society of America, Inc., American Society of Agronomy, Inc. Madison, Wisconsin USAGoogle Scholar
  107. Stapert D, Veenstra HJ (1988) The section at Usselo; brief description, grain-size distributions, and some remarks on the archaeology. Palaeohistoria 30:1–28Google Scholar
  108. Stein JK (1992) Organic matter in archaeological contexts. In: Holliday VT (ed) Soils in archaeology. Landscape evolution and human occupation. Smithsonian Institution Press, Washington and London, pp 193–216Google Scholar
  109. Stockhammer Ph (ed) (2009) Ceramics beyond chronology, Rhaden/Westfalen. Leidorf, Internationale Archäologie, Arbeitsgemeinschaft, Symposium, Tagung, Kongress 14) - KongressberichtGoogle Scholar
  110. Stoops G, Marcelino V, Mees F (eds) (2010) Interpretation of micromorphological features of soil and regoliths. Elsevier, AmsterdamGoogle Scholar
  111. Stuiver M, Pollach AH (1977) Discussion. Reporting of 14C data. Radiocarbon 19:355–365CrossRefGoogle Scholar
  112. Terberger T, De Klerk P, Helbig H, Kaiser K, Kühn P (2004) Late Weichselian landscape development and human settlement in Mecklenburg-Vorpommern, Northeast Germany. Eiszeit Gegenw 54:138–175Google Scholar
  113. Uścinowicz S (1999) Southern Baltic area during the last deglaciation. Geol Q 43:137–148Google Scholar
  114. Walker M (2005) Quaternary dating methods. John Wiley & Sons Ltd., ChichesterGoogle Scholar
  115. Walkington H (2010) Soil science applications in archaeological contexts: a review of key challenges. Earth Sci Rev 103:122–134CrossRefGoogle Scholar
  116. Wilson C, Davidson D, Cairns D, Cowie J, Blunn M (2010) SASSA: and open source, Wiki soil based knowledge and decision support tool for archaeologists. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August, Brisbane, Australia (DVD)Google Scholar
  117. Zschornack GH (2007) Handbook of X-ray data. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Chair of Physical Geography and Soil ScienceEberhard Karls University of TübingenTübingenGermany

Personalised recommendations