Skip to main content

Advertisement

Log in

A taphonomic study of the African wild dog (Lycaon pictus)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Carnivore taphonomy has been traditionally used for the interpretation of archaeological sites in order to discriminate human-generated or modified from non-anthropic bone assemblages. In most of this actualistic research, the focus has mainly been placed on hyenas and felids, neglecting other carnivores. This paper analyzes the taphonomic impact of the African wild dog (Lycaon pictus) on equid bones and compares it with the bone modification patterns produced by other canids, such as wolves (Canis lupus) in order to compare medium-/large-sized canid variability on bone modification patterns and elaborate a referential framework which could be feasibly applied to the zooarchaeological record to detect canid intervention on archaeological assemblages in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrea AC, Gotthardt RM (1984) Predator and scavenger modification of recent equid skeletal assemblages. Artic 36:276–283

    Google Scholar 

  • Andrés M, Gidna AO, Yravedra J, Domínguez-Rodrigo M (2012) A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol Anthropol Sci 4:209–219

    Article  Google Scholar 

  • Barja I, Corona E (2007) El análisis de excretas desde la Etología y la Arqueozoología: el caso del lobo ibérico. BAR S1627. Archaeopress, Oxford

    Google Scholar 

  • Binford LR (1978) Nunamiut ethnoarchaeology. Academic, New York

    Google Scholar 

  • Binford LR (1981) Bones: ancient men and modern myths. Academic, New York

    Google Scholar 

  • Binford LR (1984) Faunal remains from Klasies River Moupth. Academic, New York

    Google Scholar 

  • Blasco MF (1995) Hombres y Fieras. Estudio Zooarqueológico y Tafonómico del Yacimiento del Paleolítico Medio de la Cueva de Gabasa 1 (Huesca). Monografías de la Universidad de Zaragoza, Zaragoza

    Google Scholar 

  • Blasco MF (1997) Cave site of Gabasa in the Spanish Pyrinees. J Antropol Res 53:177–218

    Google Scholar 

  • Blumenschine R (1986) Early hominid scavenging opportunities. Implications of carcass availability in the Serengeti and Ngrongoro ecosystems. B.A.R. International Series 283. Archaeopress, Oxford

    Google Scholar 

  • Blumenschine R (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Scie 15:483–502

    Article  Google Scholar 

  • Blumenschine R (1995) Percussion marks, tooth marks and the experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51

    Article  Google Scholar 

  • Blumenschine RJ, Marean CW, Capaldo SD (1996) Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci 23:493–507

    Article  Google Scholar 

  • Brain CK (1981) The hunters or the hunted? University of Chicago Press, Chicago

    Google Scholar 

  • Bunn HT (1982) Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominins in East Africa. Ph. Dissertation. University of California, Berkeley

    Google Scholar 

  • Campmas E, Beauval C (2008) Consommation osseuse des carnivores : résultats de l’étude de l’exploitation de carcasses de bœufs (Bos taurus) par des loups captifs. Annales de Paléontologie 94:167–186

    Article  Google Scholar 

  • Capaldo SD (1997) Experimental determinations of carcass proceeding by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J Hum Evol 33:555–598

    Article  Google Scholar 

  • Castel JC (2004) L'influence des canidés sur la formation des ensembles archéologiques. Caractérisation des desrtructions dues au loup. Revue de Paléobilogie 23:675–693

    Google Scholar 

  • Cruz Uribe K (1991) Distinguishing hyena from hominid bone accumulations. J Field Archaeol 18:467–486

    Article  Google Scholar 

  • Domínguez-Rodrigo M (1997) Meat eating by early hominids at FLK Zinj 22 site, Olduvay Gorge Tanzania: an experimental approach using cut-mark data. J Hum Evol 33:669–690

    Article  Google Scholar 

  • Dominguez-Rodrigo M (1999) Flesh availability and bone modification in carcasses consumed by lions. Paleogeogeography, Paleoclimate, Paleoecology 149:373–388

    Article  Google Scholar 

  • Domínguez-Rodrigo M, Barba R (2005) A study of cut marks on small-sized carcasses and its application to the study of cut marked bones from small mammals at the FLK Zinj site. J Taphon 3:121–134

    Google Scholar 

  • Domínguez-Rodrigo M, Pickering TR (2010) A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from East and Southern Africa. J Taphon 8:155–179

    Google Scholar 

  • Dominguez-Rodrigo M, Piqueras A (2003) The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J Archaeol Sci 30:1385–1391

    Article  Google Scholar 

  • Domínguez-Rodrigo M, Barba M, Egeland CP (2007a) Deconstructing Olduvai: a taphonomic study of the Bed I sites. Springer, Dordrecht

    Book  Google Scholar 

  • Domínguez-Rodrigo M, Egeland CP, Pickering TR (2007b) Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging of early hominids. In: Pickering TR, Schick K, Toth N (eds) Breathing life into fossils: taphonomic studies in honor of C.K. (Bob) Brain. Stone Age Institute, Bloomington, pp 255–288

    Google Scholar 

  • Egeland C (2007) Zooarchaeological and taphonomic perspectives on hominid and carnivore interactions at Olduvai Gorge. Ph. Dissertation. University of Indiana, Tanzania

    Google Scholar 

  • Egeland C (2008) Patterns of early hominid site use at Olduvai Gorge. Mitteilungen der Gesellschaft für Urgeschichte 17:9–37

    Google Scholar 

  • Esteban M (2012) Can archaeozoology and taphonomy contribute to knowledge of the feeding habits of the Iberian wolf? J Archaeol Sci 39:3208–3216

    Article  Google Scholar 

  • Esteban M, Cáceres I, Tarazona C (2009) Experimentando con lobos; secuencia de acceso, consumo y dispersión de una carcasa de équido en la Sierra de la Culebra, Zamora (Península Ibérica). Bloque 3, Capítulo XLII:351–356.

  • Esteban M, Cáceres I, Fosse P (2010) Characterization of a current coprogenic sample originated by Canis lupus as a tool for identifying a taphonomic agent. J Archaeol Sci 37:2959–2970

    Article  Google Scholar 

  • Estes RD, Goddard J (1967) Prey selection and hunting behavior of the African wild dog. J Wildl Manag 31:52–69

    Article  Google Scholar 

  • Fosse P, Laudet F, Selva N, Wajrak A (2004) Premières observations néotaphonomiques sur des assemblages osseux de Bialowieza (N. E. Pologne): Intérêts pour les gisements Pleistocenes d'Europe. Paléo 16:91–116

    Google Scholar 

  • Fosse P, Avery G, Fourvel JB, Lesur-Gebremariam J, Monchot H, Brugal JP, Kolska Horwitz L (2009) The modern hyena dens: a critical survey of their taphonomic characterization from new excavated sites (Republic of Djibouti, South Africa) and from the literature. Zona Arqueológica 13:108–117

    Google Scholar 

  • Fuller TK, Kat PW (1990) Movements, activity, and prey relationships of African wild dogs (Lycaon pictus) near Aitong, southwestern Kenya. Afr J Ecol 28:330–350

    Article  Google Scholar 

  • Gidna A, Yravedra J, Domínguez-Rodrigo M (2013) A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J Archaeol Sci 40:1903–1910

    Article  Google Scholar 

  • Harstone-Rose A (2008) Evaluating the hominin scavenging niche through analysis of the carcass-processing abilities of the carnivore guild. Ph. Dissertation. Duke University, Graduate School, Department of Biological Anthroppology and Anatomy, Durham, NC

    Google Scholar 

  • Haynes G (1980a) Prey bones and predators. Potential ecologic information from analysis bones of bone site. OSSA 7:75–97

    Google Scholar 

  • Haynes G (1980b) Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6:341–351

    Google Scholar 

  • Haynes G (1981) Bone modification and skeletal disturbances by natural agencies: studies in North America. University Microfilms International. The Catholic University of America. Ph D

  • Haynes G (1982) Utilization and skeletal disturbances of North American prey carcasses. Artic 35:266–281

    Google Scholar 

  • Haynes G (1983) A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9:164–172

    Google Scholar 

  • Hayward MW, O’Brian J, Hofmeyr M, Kerley GIH (2006) Prey preferences of the african wild dog Lycaon pictus (Canidae: Carnivora): ecological requirements for conservation. J Mammal 87(6):1122–1131

    Article  Google Scholar 

  • Hughes A (1954) Hyaenas versus australopithecines as agents of bone accumulation. Am J Phys Anthropol 12:467–486

    Article  Google Scholar 

  • Malcolm JR, Van-Lawick HV (1975) Notes on wild dogs (Lycaon pictus) hunting zebras. Mammalia 39:231–240

    Article  Google Scholar 

  • Nadal J (1996) Patrones de desmembración en herbívoros consumidos por lobos (Canis lupus). In: Meléndez G, Blasco MF, Pérez I (eds) II Reunión de Tafonomía y Fosilización. Institución Fernando el Católico, Zaragoza, pp 259–263

    Google Scholar 

  • Pickering TR, Dominguez-Rodrigo M, Egeland CP, Brain CK (2004) Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkans Member 3 fossil assemblage. J Hum Evol 46:595–604

    Article  Google Scholar 

  • Pickering TR, Domínguez-Rodrigo M, Egeland C, Brain CK (2005) The contributions of limb bone fracture patterns to reconstructing early Hominid behaviour at Swartkrans Cave (South Africa): archaeological application of a new analytical method. Int J Osteoarchaeol 15:247–256

    Article  Google Scholar 

  • Pienaar UDV (1969) Predator–prey relationships amongst the larger mammals of the Kruger National Park. Koedoe 12:108–176

    Google Scholar 

  • Pole A, Gordon IJ, Gorman ML, Macaskill M (2004) Prey selection by African wild dogs (Lycaon pictus) in southern Zimbabwe. J Zool 262:207–215

    Article  Google Scholar 

  • Prucca A (2003) Caracterisaion de l’impact des loups sur des ossements d’herbivores (cerfs de Virginie, origneaux, Bisons): Etude des modifications inliges par des loups captifs et sauvages Nord-americains. DEA prehistorie, Archeologie, Histoire et civilisations de l’antiquité et du moyen age. Aix Es Provence. MMHH.

  • Rhodes R, Rhodes G (2004) Prey selection and use of natural and man-made barriers by African wild dogs while hunting. S Afr J Wildl Res 34:135–142

    Google Scholar 

  • Ruiter JD, Berger LR (2000) Leopard as a taphonomic agents in dolomitic caves. Implications for bone accumulations in the hominid bearning deposits of South Africa. J Archaeol Sci 27:665–684

    Article  Google Scholar 

  • Selvaggio MM, Wilder J (2001) Identifing the involvement of multiple carnivore taxon with archaeological bone assemblages. J Archaeol Sci 28:465–470

    Article  Google Scholar 

  • Stiner M, Munro N, Sanz M (2012) Carcass damage and digested bone from mountain lions (Felis concolor): implications for carcass persistence on landscapes as a function of prey age. J Archaeol Sci 39:896–907

    Article  Google Scholar 

  • Sutcliffe AJ (1973) Caves of the east African Rift Valley. Trans Cave Res Group G B 15:41–65

    Google Scholar 

  • Yravedra J (2006) Aportes naturales y antrópicos en la Cueva del Esquilleu (Cantabria, España). Zona Arqueológica 7:280–289

    Google Scholar 

  • Yravedra J (2007) Nuevas contribuciones en el comportamiento cinegético de la Cueva de Amalda. Munibe 58:43–88

    Google Scholar 

  • Yravedra J (2010) A taphonomic perspective on the origins of the faunal remains from Amalda Cave (Spain). J Tapho 8:301–334

    Google Scholar 

  • Yravedra J, Domínguez-Rodrigo M (2009) The shaft-based methodological approach to the quantification of long limb bones and its relevance to understanding hominid subsistence in the Pleistocene: application to four Palaeolithic sites. J Quaternary Sci 24:85–96

    Google Scholar 

  • Yravedra J, Lagos L, Bárcena F (2011) A taphonomic study of wild wolf (Canis lupus) modification of horse bones in Northwestern Spain. J Taphon 9:37–67

    Google Scholar 

  • Yravedra J, Lagos L, Bárcena F (2013) The wild wolf (Canis lupus) as a dispersal agent of animal carcasses in northwestern Spain. Journal of Taphonomy

Download references

Acknowledgments

Many thanks to Mr. Santiago Borragán, Chief Veterinary Officer and the staff of the felid section at Cabárceno Natural Park (Cantabria), for kindly facilitating research on African wild dogs and for collaborating with us. They were most helpful with the feeding of these canids and the recovery of the bones. Finally, we thank Aixa Vidal for the translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yravedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yravedra, J., Andrés, M. & Domínguez-Rodrigo, M. A taphonomic study of the African wild dog (Lycaon pictus). Archaeol Anthropol Sci 6, 113–124 (2014). https://doi.org/10.1007/s12520-013-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-013-0164-1

Keywords

Navigation