Micro-abrasion of flint artifacts by mobile sediments: a taphonomic approach

Original Paper

Abstract

Fluvial redeposition of stone artifacts is a major complicating factor in the interpretation of Lower Palaeolithic open-air archaeological sites. However, the microscopic examination of lithic surfaces may provide valuable background information on the transport history of artifacts, particularly in low energy settings. Replica flint artifacts were therefore abraded in an annular flume and examined with a scanning electron microscope. Results showed that abrasion time, sediment size, and artifact transport mode were very sensitive predictors of microscopic surface abrasion, ridge width, and edge damage (p < 0.000). These results suggest that patterns of micro-abrasion of stone artifacts may enhance understanding of archaeological assemblage formation in fluvial contexts

Keywords

Fluvial processes Micro-abrasion Flaked stone taphonomy SEM Flint 

References

  1. Amos CL, Li MZ, Sutherland TF (1998) The contribution of ballistic momentum flux to the erosion of cohesive beds by flowing water. J Coast Res 14:564–569Google Scholar
  2. Amos CL, Sutherland TF, Cloutier D, Patterson S (2000) Corrasion of a remoulded cohesive bed by saltating littorinid shells. Cont Shelf Res 20:1291–1315CrossRefGoogle Scholar
  3. Ashton N (1998a) The taphonomy of the flint assemblages. In: Ashton N, Lewis SG, Parfitt S (eds) Excavations at the Lower Palaeolithic site at East Farm, Barnham, Suffolk, 1989–94. British Museum Press, London, UK, pp 183–204 (Occasional Paper No. 125)Google Scholar
  4. Ashton N (1998b) The spatial distribution of the lithic artefacts and human behaviour. In: Ashton N, Lewis SG, Parfitt S (eds) Excavations at the Lower Palaeolithic site at East Farm, Barnham, Suffolk, 1989–94. British Museum Press, London, UK, pp 251–258 (Occasional Paper No. 125)Google Scholar
  5. Ashton N et al (2005) Excavations at the Lower Palaeolithic site at Elveden, Suffolk. Proc Prehist Soc 71:1–61CrossRefGoogle Scholar
  6. Bagnold RA (1941) The physics of blown sand and desert dunes. London: Methuen, p 265Google Scholar
  7. Bagnold RA (1966) An approach to the sediment transport problem from general physics. Prof. Paper 422–1, U. S. Geol SurvGoogle Scholar
  8. Bertran P et al (2010) The impact of periglacial processes on Palaeolithic sites: the case of sorted patterned grounds. Quat Int 214:17–29. doi:10.1016/j.quaint.2009.10.021 CrossRefGoogle Scholar
  9. Bertran P et al (2012) Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. J Archaeol Sci 39:3148–3166. doi:10.1016/j.jas.2012.04.055 CrossRefGoogle Scholar
  10. Bietti A (1996) Image processing in microwear studies on flint artifacts. Archaeol Calcolatori VII:387–396Google Scholar
  11. Binford LR (1981) Behavioral archaeology and the “Pompeii premise. J Anthropol Res 37:195–208Google Scholar
  12. Bromage TG (1984) Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64:161–178. doi:10.1002/ajpa.1330640210 CrossRefGoogle Scholar
  13. Bunn H et al (1980) FxJj50: an Early Pleistocene site in Northern Kenya. World Archaeol 12:109–136CrossRefGoogle Scholar
  14. Burroni D, Donahue RE, Pollard AM, Mussi M (2002) The surface alteration features of flint artefacts as a record of environmental processes. J Archaeol Sci 29:1277–1287. doi:10.1006/jasc.2001.0771 CrossRefGoogle Scholar
  15. Chambers JC (2003) Like a rolling stone? The identification of fluvial transportation damage signatures on secondary context bifaces. Lithics: Newsl Lithic Stud Soc 24:66–77Google Scholar
  16. Dibble HL, Chase PG, McPherron SP, Tuffreau A (1997) Testing the reality of a “living floor” with archaeological data. Am Antiq 62:629–651CrossRefGoogle Scholar
  17. Durham P, Lewis PH, Shennan S (1995) Artefact matching and retrieval using the generalised Hough transform. Proc Comput Appl Archaeol 25–30Google Scholar
  18. Enloe J (2006) Geological processes and site structure: assessing integrity at a Late Paleolithic open-air site in northern France. Geoarchaeology 21:523–540CrossRefGoogle Scholar
  19. Eren MI et al (2010) Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: a test case from South India. J Archaeol Sci 37:3010–3021. doi:10.1016/j.jas.2010.06.024 CrossRefGoogle Scholar
  20. Eren MI et al (2011) Flaked stone taphonomy: a controlled experimental study of the effects of sediment consolidation on flake edge morphology. J Taphon 9:201–217Google Scholar
  21. Evans AA, Donahue RE (2005) The elemental chemistry of lithic microwear: an experiment. J Archaeol Sci 32:1733–1740. doi:10.1016/j.jas.2005.06.010 Google Scholar
  22. Evans AA, Donahue RE (2008) Laser scanning confocal microscopy: a potential technique for the study of lithic microwear. J Archaeol Sci 35:2223–2230. doi:10.1016/j.jas.2008.02.006 CrossRefGoogle Scholar
  23. Faulks NR, Kimball LR, Hidjrati N, Coffey TS (2011) Atomic force microscopy of microwear traces on Mousterian tools from Myshtylagty Lagat (Weasel Cave), Russia. Scanning 33:304–315. doi:10.1002/sca.20273 CrossRefGoogle Scholar
  24. Fernandes P et al (2007) Origins of prehistoric flints: the neocortex memory revealed by scanning electron microscopy. C R Palevol 6:557–568CrossRefGoogle Scholar
  25. Fernández-Jalvo Y, Andrews P (2003) Experimental effects of water abrasion on bone fragments. J Taphon 1:147–164Google Scholar
  26. González-Urquijo JE, Ibáñez-Estévez JJ (2003) The quantification of use-wear polish using image analysis. First results. J Archaeol Sci 30:481–489. doi:10.1006/jasc.2002.0855 CrossRefGoogle Scholar
  27. Grace R (1989) Interpreting the function of stone tools: the quantification and computerisation of microwear analysis. BAR, Oxford, EnglandGoogle Scholar
  28. Grace R, Graham IDG, Newcomer MH (1985) The quantification of microwear polishes. World Archaeol 17:112–120. doi:10.1080/00438243.1985.9979954 CrossRefGoogle Scholar
  29. Grosman L et al (2011) Studying post depositional damage on Acheulian bifaces using 3-D scanning. J Hum Evol 60:398–406. doi:10.1016/j.jhevol.2010.02.004 CrossRefGoogle Scholar
  30. Harding P et al (1987) The transport and abrasion of flint handaxes in a gravel-bed river. In: Sieveking G d G, Newcomer MH (eds) The human uses of flint and chert: proceedings of the fourth international flint symposium. Cambridge University Press, Cambridge, UK, pp 115–126Google Scholar
  31. Hiscock P (1985) The need for a taphonomic perspective in stone artefact analysis. Qld Archaeol Res 2:82–95Google Scholar
  32. Hosfield R (1999) The Palaeolithic of the Hampshire Basin: a regional model of hominid behaviour during the Middle Pleistocene. Archaeopress, OxfordGoogle Scholar
  33. Hosfield R, Chambers J (2005a) Flake modifications during fluvial transportation: three cautionary tales. Lithics: Newslet Lithic Stud Soc 24:57–65Google Scholar
  34. Hosfield R, Chambers J (2005b) River gravels and flakes: new experiments in site formation, stone tool transportation and transformation. Experimentelle archaologie in Europa, Bilanz. Isensee Verlag, Oldenburg, pp 57–74Google Scholar
  35. Howard CD (2002) The gloss patination of flint artifacts. The Plains Anthropol 47:283–287Google Scholar
  36. Isaac G (1967) Towards the interpretation of occupation debris: some experiments and observations. Kroeber Anthropol Soc Pap 37:31–57Google Scholar
  37. Keeley LH (1980) Experimental determination of stone tool uses: a microwear analysis. Chicago, IL, University of Chicago PressGoogle Scholar
  38. Kimball LR, Kimball JF, Allen PE (1995) Microwear polishes as viewed through the atomic force microscope. Lithic Technol 20:6–28Google Scholar
  39. Lenoble A, Bertran P (2004) Fabric of Palaeolithic levels: methods and implications for site formation processes. J Archaeol Sci 31:457–469. doi:10.1016/j.jas.2003.09.013 CrossRefGoogle Scholar
  40. Levi Sala I (1986) Use wear and post-depositional surface modification: a word of caution. J Archaeol Sci 13:229–244. doi:10.1016/0305-4403(86)90061-0 CrossRefGoogle Scholar
  41. Locht JL, Antoine P, Limondin-Lozouet N (2010) Caours. rapport triennal de fouille programmée 2009. 1–140Google Scholar
  42. Lopinot NH, Ray JH (2007) Trampling experiments in the search for the earliest Americans. Am Antiq 72:771–782CrossRefGoogle Scholar
  43. Luedtke B (1992) An archaeologist’s guide to chert and flint. Institute of Archaeology. University of California, Los AngelesGoogle Scholar
  44. Malinsky-Buller A, Hovers E, Marder O (2011) Making time: ‵living floors’, ‵palimpsests’ and site formation processes - a perspective from the open-air Lower Paleolithic site of Revadim Quarry, Israel. J Anthropol Archaeol 30:89–101. doi:10.1016/j.jaa.2010.11.002 CrossRefGoogle Scholar
  45. Marder O et al (2011) Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel). J Hum Evol 60:508–522. doi:10.1016/j.jhevol.2010.01.007 CrossRefGoogle Scholar
  46. McPherron SJ (2005) Artifact orientations and site formation processes from total station proveniences. J Archaeol Sci 32:1003–1014CrossRefGoogle Scholar
  47. Miller CE, Conard NJ, Goldberg P, Berna F (2009) Dumping, sweeping and trampling: experimental micromorphological analysis of anthropogenically modified combustion features. The taphonomy of burned organic residues and combustion features in archaeological contexts: proceedings of the round table, Valbonne, May 27–29 2008, CEPAMGoogle Scholar
  48. Mishra S et al (2007) Fluvial deposits as an archive of early human activity. Quat Sci Rev 26:2996–3016. doi:10.1016/j.quascirev.2007.06.035 CrossRefGoogle Scholar
  49. Paddayya K, Petraglia MD (1993) Formation processes of Acheulean localities in the Hunsgi and Baichbal valleys, peninsular India. In: Goldberg P, Nash DT, Petraglia M (eds) Formation processes in archaeological context. Prehistory Press, Madison, pp 61–82Google Scholar
  50. Parfitt SA et al (2010) Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466:229–233. doi:10.1038/nature09117 CrossRefGoogle Scholar
  51. Petraglia M, Nash D (1987) The impact of fluvial processes on experimental sites. In: Nash D, Petraglia M (eds) Natural formation processes and the archaeological record. BAR Int Ser, OxfordGoogle Scholar
  52. Pope M, Roberts M (2005) Observations on the relationship between Palaeolithic individuals and artefact scatters at the Middle Palaeolithic site of Boxgrove, UK. In: Gamble C, Porr M (eds) The hominid individual in context: archaeological investigations of Lower and Middle Palaeolithic landscapes, locales and artefacts. Routledge, Abingdon, UK, pp 81–97Google Scholar
  53. Rottländer R (1975) The formation of patina on flint. Archaeometry 17:106–110. doi:10.1111/j.1475-4754.1975.tb00120.x CrossRefGoogle Scholar
  54. Schick K (1987) Experimentally-derived criteria for assessing hydrological disturbances of archaeological sites. In: Nash D, Petraglia M (eds) Natural formation processes and the archaeological record. BAR Int Ser, Oxford, p 352Google Scholar
  55. Schiffer MB (1983) Toward the identification of formation processes. Am Antiq 48:675–706. doi:10.2307/279771 CrossRefGoogle Scholar
  56. Schoville BJ (2010) Frequency and distribution of edge damage on Middle Stone Age lithic points, Pinnacle Point 13B, South Africa. J Hum Evol 59:378–391. doi:10.1016/j.jhevol.2010.07.015 CrossRefGoogle Scholar
  57. Shackley M (1974) Stream abrasion of flint implements. Nature 248:501–502CrossRefGoogle Scholar
  58. Shackley M (1975) A study of the Mousterian of Acheulian tradition industries of Southern Britain. Dissertation, University of SouthamptonGoogle Scholar
  59. Shipman P (1981) Applications of scanning electron microscopy to taphonomic problems. Ann N Y Acad Sci 376:357–385. doi:10.1111/j.1749-6632.1981.tb28179.x CrossRefGoogle Scholar
  60. Shipman P, Rose J (1983) Early hominid hunting, butchering, and carcass-processing behaviors: approaches to the fossil record. J Anthropol Archaeol 2:57–98CrossRefGoogle Scholar
  61. Singer R, Wymer JJ, Gladfelter BG, Wolff RG (1973) Excavation of the Clactonian industry at the golf course, Clacton-on-Sea, Essex. Proc Prehist Soc pp 6–74Google Scholar
  62. Sitzia L et al (2012) The paleoenvironment and lithic taphonomy of Shi’Bat Dihya 1, a Middle Paleolithic site in Wadi Surdud, Yemen. Geoarchaeology 27:471–491. doi:10.1002/gea.21419 CrossRefGoogle Scholar
  63. Soulsby RL (1983) The bottom boundary layer of shelf seas. In: B. Johns (ed) Elsevier Oceanography Series. Elsevier, pp 189–266Google Scholar
  64. Stachowiak GW, Batchelor AW (2005) Engineering tribology, 3rd edn. Butterworth-Heinemann, Oxford, EnglandGoogle Scholar
  65. Stapert D (1976) Some natural surface modifications on flint. Palaeohistoria 18:7–41Google Scholar
  66. Thompson CEL, Amos CL (2002) The impact of mobile disarticulated shells of Cerastoderma edulis on the abrasion of a cohesive substrate. Estuaries 25:204–214CrossRefGoogle Scholar
  67. Thompson CEL, Amos CL (2004) Effect of sand movement on a cohesive substrate. J Hydraul Eng 130:1123–1125CrossRefGoogle Scholar
  68. Thompson CEL, Ball S, Thompson TJU, Gowland R (2011) The abrasion of modern and archaeological bones by mobile sediments: the importance of transport modes. J Archaeol Sci 38:784–793. doi:10.1016/j.jas.2010.11.001 CrossRefGoogle Scholar
  69. Tringham R et al (1974) Experimentation in the formation of edge damage: a new approach to lithic analysis. J Field Archaeol 1:171–196CrossRefGoogle Scholar
  70. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geo 30:377–392Google Scholar
  71. Wymer J (1968) Lower Palaeolithic archaeology in Britain as represented by the Thames Valley. John Baker, LondonGoogle Scholar
  72. Wymer J (1995) The context of palaeoliths. In: Schofield A (ed) Lithics in context: suggestions for the future direction of lithic studies, Lithic Studies Society Occasional Paper. Lithic Studies Society, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of ReadingReadingUK
  2. 2.Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of Southampton Waterfront Campus European WaySouthamptonUK

Personalised recommendations