Skip to main content

Advertisement

Log in

The application of biometry and LA-ICP-MS to provenance isolated bones: a study of hominin remains from Oumm Qatafa Cave, Judean Desert

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Three hominin phalanges were recently identified in old faunal collections attributed to the Late Acheulean (Layer D2) dated to ca. 213 Kya, from Oumm Qatafa Cave (Judean Desert), a site excavated in 1928–1949. In terms of general appearance (colour, patina and adhering sediment), these specimens resembled the fauna with which they were found, but the likelihood of stratigraphic problems especially in old excavations, the presence of 4th millennium b.c. burials in the topmost Layer A at the site and the absence of any mention of Late Acheulean hominin remains in publications relating to the site prompted us to verify that the phalanges were indeed in situ. Osteometric examination showed the phalanges to be indistinguishable from those of Middle Paleolithic Levantine anatomically modern humans (AMHS) as well as Upper Paleolithic and recent populations, thus contributing little to the resolution of their provenance. To further investigate this issue, we compared the elemental composition of the phalanges to that of fauna from the same and overlying archaeological layers using non-destructive laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS). The results showed a close resemblance in elemental composition between the phalanges and fauna from Layer D2, implying that they are in situ. This would indicate either an early occurrence of AMHS in the region or the presence of an ancestral archaic Homo. We propose that LA-ICP-MS offers a useful minimally invasive method for provenancing isolated human and faunal remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexeev VP (1966) Osteometria. Nauka, Moskva, pp 129–130, 202–203 (in Russian)

    Google Scholar 

  • Balek CL (2002) Buried artifacts in stable upland sites and the role of bioturbation: a review. Geoarchaeology 17(1):41–51

    Article  Google Scholar 

  • Bentor Y (1951) Etude pétrographique des roches de la grotte d’Oumm-Qatafa. In: Neuville R (ed) Paléolithique et Mésolithique du Désert de Judée. Archives de l’Institut de Paléontologie Humaine 24, Paris, pp 24–197

    Google Scholar 

  • Beyth M, Shirav M, Halicz L, Bogosh R (1988) Geochemical orientation survey of Har Timna, Southern Israel. Geological Survey of Israel, Report GSI/15/88

  • Bulska E, Wagner B, Walaszek D, Halicz L, Segal I (2009) Determination of elemental composition of apatite crystals by LA-ICP-MS. Abstract 36th Coloquium Spectroscopicum Internationale, Budapest, Hungary

  • Case DT, Heilman J (2006) New siding techniques for the manual phalanges: a blind test. Int J Osteoarchaeol 16:338–346

    Article  Google Scholar 

  • Castro W, Hoogewerff J, Latkoczy C, Almirall JR (2010) Application of laser ablation (LA-ICP-SF-MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195:17–27

    Article  Google Scholar 

  • Christensen AM (2009) Techniques for siding manual phalanges. Forensic Sci Int 193:84–87

    Article  Google Scholar 

  • Courtaud P, Tillier AM (2005) À propos de vestiges humains immatures inédits provenant des niveaux moustériens de Qafzeh. Bull Mém Soc Anthropol Paris 17(1–2):37–45

    Google Scholar 

  • Dogan A, Uslu M, Aydinlioglu A, Harman M, Akpinar F (2007) Morphometric study of the human metatarsals and phalanges. Clin Anat 20:209–214

    Article  Google Scholar 

  • Evans A, Langer J, Donahue R, Wolframm Y, Lovis W (2010) Lithic raw material sourcing and the assessment of Mesolithic landscape organization and mobility strategies in northern England. The Holocene 20:1157–1163

    Article  Google Scholar 

  • Gilbertson D, Bird M, Hunt C, McLaren S, Mani Banda R, Pyatt B, Rose J, Stephens M (2005) Past human activity and geomorphological change in a guano-rich tropical cave mouth: initial interpretations of the Late Quaternary succession in the Great Cave of Niah, Sarawak. Asian Perspect 44(1):16–41

    Article  Google Scholar 

  • Gilead D (1970) Early Palaeolithic cultures in Israel and the Near East. Unpublished PhD thesis, Hebrew University, Jerusalem

  • Gopher A, Ayalon A, Bar-Matthews M, Barkai R, Frumkin A, Karkanas P, Shahack-Gross R (2010) The chronology of the late Lower Paleolithic in the Levant based on U–Th ages of speleothems from Qesem Cave, Israel. Quat Geochron 5:644–656

    Article  Google Scholar 

  • Grandstaff DE, Terry DO Jr (2009) Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA. Appl Geochem 24:733–745

    Article  Google Scholar 

  • Grün R, Beaumont P (2001) Border Cave revisited: a revised ESR chronology. J Hum Evol 40(6):467–482

    Article  Google Scholar 

  • Haas G (1951) Remarque sur la microfaune de mammifères de la Grotte de Oumm-Qatafa. In: Neuville R (ed) Paléolithique et Mésolithique du Désert de Judée. Archives de l’Institut de Paléontologie Humaine 24, Paris, pp 218–233

    Google Scholar 

  • Hershkovitz I, Smith P, Sarig R, Quam R, Rodríguez L, García R, Arsuaga JL, Barkai R, Gopher A (2010) Middle Pleistocene dental remains from Qesem Cave (Israel). Am J Phys Anthropol. doi:10.1002/ajpa.21446

  • Iyengar V, Wolttiez J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 34(3):474–481

    Google Scholar 

  • Kondo O, Dodo Y (2002) The postcranial bones of the Neanderthal child of the Burial No. 1. In: Akazawa T, Muhesen S (eds) Neanderthal burials—excavations of the Dederiyeh Cave Afrin, Syria. International Research Center for Japanese Studies, Kyoto, pp 139–214

    Google Scholar 

  • Lorenzo C, Arsuaga JL, Carretero JM (1999) Hand and foot remains from the Gran Dolina Early Pleistocene site (Sierra de Atapuerca, Spain). J Hum Evol 37:501–522

    Article  Google Scholar 

  • MacFadden BJ, Hulbert RC Jr (2009) Calibration of mammoth (Mammuthus) dispersal into North America using rare earth elements of Plio-Pleistocene mammals from Florida. Quat Res 71:41–48

    Article  Google Scholar 

  • Martin R, Saller K (1957) Lehrbuch der anthropologie, Band I, 3rd edn. Gustav Fischer, Stuttgart, pp 554–589

    Google Scholar 

  • Martin JE, Patrick D, Kihrn AJ, Foit FF, Grandstaff DE (2005) Lithostratigraphy, tephrochronology and rare earth element geochemistry of fossils at the classical Pleistocene Fossil Lake area, South Central Oregon. J Geol 119:139–155

    Article  Google Scholar 

  • Matsu’ura S, Kondo M, Aziz F, Sudijono NS, Watanabe N (2000) First known tibia of an early Javanese hominid. Curr Anthropol 41(2):297–300

    Article  Google Scholar 

  • Metzger CA, Terry DO Jr, Grandstaff DE (2009) Effect of paleosol formation on rare earth element signatures in fossil bone. Geol 32:497–500

    Article  Google Scholar 

  • McCown TD, Keith A (1939) The fossil human remains from the Levalloiso-Mousterian. In: Garrod DAE, Bate DMA (eds) The stone age of Mount Carmel, vol II. Claredon, Oxford, pp 139–237

    Google Scholar 

  • Mercier N, Valladas H, Froget L, Joron J-L, Ronen A (2000) Datation par thermoluminescence de la base du gisement paléolithique de Tabun (Mont Carmel. Israël). C R Acad Sci 330:731–738 (Paris)

    Google Scholar 

  • Millard A (2006) Comment on Martínez-García et al. “Heavy metals in human bones in different historical epochs”. Sci Total Environ 354:295–297

    Article  Google Scholar 

  • Miller Rosen A (2007) Civilizing climate. Altamira, Plymouth

    Google Scholar 

  • Moyà-Solà S, Köhler M, Alba DM, Almécija S (2008) Taxonomic attribution of the Olduvai Hominid 7 manual remains and the functional interpretation of hand morphology in robust australopithecines. Folia Primatol 79:215–250

    Article  Google Scholar 

  • Musgrave JH (1973) The phalanges of Neanderthal and Upper Palaeolithic hands. In: Day MH (ed) Human evolution. Taylor and Francis, London, pp 59–85

    Google Scholar 

  • Neuville R (1931) L’Acheuléen supériere de la grotte d’Oumm Qatafa (Palestine). L’Anthropol 41(13–51):249–263

    Google Scholar 

  • Neuville R (ed) (1951) Paléolithique et Mésolithique du Désert de Judée. Archives de l’Institut de Paléontologie Humaine 24, Paris

  • Neuville R, Boureau R (1930) Squelettes palestiniens du premier âge du Bronze. Bull Mém Soc’Anthropol Paris 1(4–6):33–36

    Article  Google Scholar 

  • Neuville R, Mallon A (1931) Les debuts de l’age des metaux dans les grottes du désert de Judée. Syria 12:24–47

    Article  Google Scholar 

  • Nielsen AE (1991) Trampling the archaeological record: an experimental study. Am Antiquity 56(3):483–503

    Article  Google Scholar 

  • Parish JG (1966) Radiographic measurements of the skeletal structure of the normal hand. Br J Radiol 39:52–62

    Article  Google Scholar 

  • Perrot J (1992) Umm Qatafa and Umm Qala’a: two Ghassulian caves in the Judean desert. Eretz-Israel 23:100*–111*

    Google Scholar 

  • Pike AWG (2000) U-series dating of archaeological bone using TIMS. PhD thesis, University of Oxford

  • Pike AWG, Eggins S, Grün R, Thackeray F (2004) U-series dating of TP1, an almost complete human skeleton from Tuinplaas (Springbok Flats), South Africa. S Afr J Sci 100(7–8):381–383

    Google Scholar 

  • Plummer TW, Kinyua AM, Potts R (1994) Provenancing of hominid and mammalian fossils from Kanjera, Kenya, using EDXRF. J Archaeol Sci 21:553–563

    Article  Google Scholar 

  • Plummer T, Potts R (2005) Hominid fossil sample from Kanjera, Kenya: description, provenance, and implications of new and earlier discoveries. Am J Phys Anthropol 96(1):7–23

    Article  Google Scholar 

  • Porat N (2007) Luminescence and electron spin resonance dating. In: Chazan M, Horwitz LK (eds) Holon: a Lower Paleolithic site in Israel. Peabody Museum, Cambridge, pp 17–26

    Google Scholar 

  • Porat N, Chazan M, Schwarcz HP, Horwitz LK (2002) Timing of the Lower to Middle Paleolithic transition in the Levant: evidence from new dates. J Hum Evol 43:107–122

    Article  Google Scholar 

  • Russo RE, Mao X, Liu H, Gonzalez J, Mao SS (2002) Laser ablation in analytical chemistry—a review. Talanta 57:425–451

    Article  Google Scholar 

  • Schiffer MB (1987) Formation processes of the archaeological record. University of New Mexico Press, Albuquerque

    Google Scholar 

  • Schwarcz HP, Goldberg P, Blackwell B (1980) Uranium series dating of archaeological sites in Israel. Isr Earth Sci 29:157–165

    Google Scholar 

  • Shea J (2003) The Middle Paleolithic of the East Mediterranean Levant. J World Prehist 17:313–394

    Article  Google Scholar 

  • Speakman RJ, Glascock MD, Tykot RH, Descantes C, Thatcher JJ, Skinner CE, Lienhop KM (2007) Selected applications of laser ablation inductively coupled plasma–mass spectrometry to archaeological research. In: Glascock MD, Speakman RJ, Popelka-Filcoff RS (eds) Archaeological chemistry: analytical methods and archaeological interpretation, ACS Publication Series 968. American Chemical Society, Washington, pp 275–296

    Google Scholar 

  • Susman RL (2008) Evidence bearing on the status of Homo habilis at Olduvai Gorge. Am J Phys Anthropol 137:356–361

    Article  Google Scholar 

  • Takata MK, Saiki M, Sumita NM, Saldiva PHN, Pasqualucci CA (2005) Trace element determinations in human cortical and trabecular bones. J Radioanal Nucl Chem 264(1):5–8

    Article  Google Scholar 

  • Tchernov E (1988) The paleobiogeographical history of the southern Levant. In: Yom-Tov Y, Tchernov E (eds) The zoogeography of Israel. Junk, Dordrecht, pp 159–250

    Google Scholar 

  • Tillier AM (1999) Les enfants moustériens de Qafzeh. Interprétation phylogénétique et paléoauxologique. Cahiers de Paléoanthropologie, CNRS Éditions, Paris

  • Trinkaus E, Hilton CE (1996) Neanderthal pedal proximal phalanges: diaphyseal loading patterns. J Hum Evol 30:399–425

    Article  Google Scholar 

  • Trueman CN (1999) Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios 14:555–568

    Article  Google Scholar 

  • Trueman CN, Benton MJ (1997) A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology 5:263–266

    Article  Google Scholar 

  • Trueman CN, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739

    Article  Google Scholar 

  • Trueman CN, Behrensmeyer AK, Potts R, Tuross N (2006) High-resolution records of location and stratigraphic provenance from the rare earth element composition in fossil bones. Geochim Cosmochim Acta 70:4343–4355

    Article  Google Scholar 

  • Vandermeersch B (1981) Les Hommes Fossiles de Qafzeh (Israël). Editions du CNRS, Paris

    Google Scholar 

  • Vaufrey R (1951) Etude Paléontologique. In: Neuville R (ed) Paléolithique et Mésolithique du désert de Judée. Archives de l’Institut de Paléontologie Humaine 24, Paris, pp 198–217

    Google Scholar 

  • Villa P (1982) Conjoinable pieces and site formation processes. Am Antiquity 47:276–310

    Article  Google Scholar 

  • Villa P, Courtin J (1983) The interpretation of stratified sites: a view from underground. J Archaeol Sci 10(3):267–281

    Article  Google Scholar 

  • Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

Download references

Acknowledgements

We would like to offer our appreciation and give credit to Emma Humphreys (PhD candidate, Department of Anthropology, University of Toronto) who originally found the phalanges whilst cataloguing the Oumm Qatafa fauna. Our sincere thanks is also extended to: Dr. Clive Trueman and an anonymous reviewer for their valuable suggestions, which greatly improved the manuscript; to Dr. Rivka Rabinovich, curator of the archaeozoological collections at The Hebrew University of Jerusalem, for facilitating access to LKH to study the Oumm Qatafa fauna; and to Mr. Vladimir Nakhlin (photography) and Mr. Leonid Zeiger (phalanx drawing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liora Kolska Horwitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Fig. 1

(GIF 186 kb)

High resolution. (TIFF 985 kb)

Online List 1

(DOC 33 kb)

Online References

(DOC 28 kb)

Online Table 1

(DOC 35 kb)

Online Table 2

(DOC 44 kb)

Online Table 3

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, L.K., Smith, P., Faerman, M. et al. The application of biometry and LA-ICP-MS to provenance isolated bones: a study of hominin remains from Oumm Qatafa Cave, Judean Desert. Archaeol Anthropol Sci 3, 245–262 (2011). https://doi.org/10.1007/s12520-011-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-011-0056-1

Keywords

Navigation