Skip to main content
Log in

Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Next-generation sequencing has revolutionized our perspective on the gut microbiome composition, revealing the true extent of the adverse effects of antibiotics. The impact of antibiotic treatment on gut microbiota must be considered and researched to provide grounds for establishing new treatment strategies that are less devastating on commensal bacteria. This study investigates the impact on gut microbiome when a commonly used antibiotic, azithromycin is administered, as well as uncovers the benefits induced when it is used in combination with lactulose, a prebiotic known to enhance the proliferation of commensal microbes.

Methods

16S rRNA gene sequencing analysis of stool samples obtained from 87 children treated with azithromycin in combination with or without lactulose have been determined. Children’s gut microbial profile was established at the pre- and post-treatment stage.

Results

Azithromycin caused an increase in the relative abundance of opportunistic pathogens such as Streptococcus that was evident 60 days after treatment. While few days after treatment, children who also received lactulose started to show a higher relative abundance of saccharolytic bacteria such as Lactobacillus, Enterococcus, Anaerostipes, Blautia and Roseburia, providing a protective role against opportunistic pathogens. In addition, azithromycin-prebiotic combination was able to provide a phylogenetic profile more similar to the pre-treatment stage.

Conclusion

It is suggested that during azithromycin treatment, lactulose is able to reinstate the microbiome equilibrium much faster as it promotes saccharolytic microbes and provides a homeostatic effect that minimizes the opportunistic pathogen colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Youngster I, Avorn J, Belleudi V, Cantarutti A, Diez-Domingo J, Kirchmayer U, et al. Antibiotic use in children-a cross-national analysis of 6 countries. J Pediatr. 2017;182:239–44.e1.

    Article  Google Scholar 

  2. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J. 2018;6:1496–507.

    Article  CAS  Google Scholar 

  4. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.

  6. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–611.

    Article  PubMed  Google Scholar 

  7. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66.

    Article  CAS  PubMed  Google Scholar 

  8. Hong W, Si T, Zhen Y, Xiu Y, Guo Z. Impact of early-life antibiotic use on gut microbiota of infants. J Microb Biochem Technol. 2017;9:227–31.

    Google Scholar 

  9. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352:544–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oldenburg CE, Sie A, Coulibaly B, Ouermi L, Dah C, Tapsoba C, et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect Dis. 2018;5:ofy289.

  12. Doan T, Arzika AM, Ray KJ, Cotter SY, Kim J, Maliki R, et al. Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial. Clin Infect Dis. 2017;64:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Frontiers Immunol. 2014;5:427.

    Article  CAS  Google Scholar 

  14. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38:1290–8.

    Article  CAS  Google Scholar 

  15. Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr. 2016;170:750–7.

    Article  PubMed  Google Scholar 

  16. Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5:759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao X, Jiang Z, Yang F, Wang Y, Gao X, Wang Y, et al. Sensitive and simplified detection of antibiotic influence on the dynamic and versatile changes of fecal short-chain fatty acids. PLoS One. 2016;11:e0167032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  CAS  Google Scholar 

  19. Cardelle-Cobas A, Fernandez M, Salazar N, Martinez-Villaluenga C, Villamiel M, Ruas-Madiedo P, et al. Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. J Dairy Res. 2009;76:317–25.

    Article  CAS  PubMed  Google Scholar 

  20. Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:E1021.

    Article  CAS  PubMed  Google Scholar 

  21. Stojancevic M, Bojic G, Salami HA, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol. 2014;16:55–68.

    PubMed  Google Scholar 

  22. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Macklin MT, Mann HB. Fallacies inherent in the proband method of analysis of human pedigrees for inheritance of recessive traits; two methods of correction of the formula. Am J Dis Child. 1947;74:456–67.

    Article  CAS  Google Scholar 

  25. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.

    Article  Google Scholar 

  26. Wilcoxon F. Individual comparisons of grouped data by ranking methods. J Econ Entomol. 1946;39:269.

    Article  CAS  PubMed  Google Scholar 

  27. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32:675–701.

    Article  Google Scholar 

  28. Team RC. R: A language and environment for statistical computing (Version 3.4.2). Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/. Accessed 10 Feb 2019.

  29. Leo Lahti SSea. Tools for microbiome analysis in R. Version 1.5.28. 2017. https://microbiome.github.com/microbiome. Accessed 10 Feb 2019.

  30. Engleberg NC, Johnson J 4th, Bluestein J, Madden K, Rinaldi MG. Phaeohyphomycotic cyst caused by a recently described species, Phaeoannellomyces elegans. J Clin Microbiol. 1987;25:605–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dinsdale AE, Edwards AR, Bailey BA, Tuba I, Akhter S, McNair K, et al. Multivariate analysis of functional metagenomes. Front Genet. 2013;4:41.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13:85–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ovetchkine P, Rieder MJ, Canadian Paediatric Society, Drug Therapy and Hazardous Substances Committee. Azithromycin use in paediatrics: a practical overview. Paediatr Child Health. 2013;18:311–6 (in English, French).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parker EPK, Praharaj I, John J, Kaliappan SP, Kampmann B, Kang G, et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci Rep. 2017;7:9168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lode H, Borner K, Koeppe P, Schaberg T. Azithromycin–review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37(Suppl C):1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Reese AT, Dunn RR. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio. 2018. https://doi.org/10.1128/mBio.01294-18.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sanders WE Jr, Sanders CC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev. 1997;10:220–41.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29(Suppl A):19–24.

    Article  PubMed  Google Scholar 

  39. Rezai MS, Pourmousa R, Dadashzadeh R, Ahangarkani F. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med. 2016;7:114–9.

    PubMed  PubMed Central  Google Scholar 

  40. Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015;197:2104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, et al. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol. 2013;85:376–88.

    Article  CAS  PubMed  Google Scholar 

  42. David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial succession follows acute secretory diarrhea in humans. mBio. 2015;6:e00381-15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014;515:423–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J Crohns Colitis. 2016;10:296–305.

    Article  PubMed  Google Scholar 

  45. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.

    Article  CAS  PubMed  Google Scholar 

  48. Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19:3404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.

    Article  CAS  PubMed  Google Scholar 

  50. Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013;14:950–9.

    Article  CAS  PubMed  Google Scholar 

  51. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132:562–75.

    Article  CAS  PubMed  Google Scholar 

  53. Clausen MR, Mortensen PB. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut. 1995;37:684–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, et al. Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorect Dis. 2001;16:195–201.

    Article  CAS  Google Scholar 

  55. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000;47:397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39:164–71.

    Article  CAS  PubMed  Google Scholar 

  57. Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl. 1996;216:132–48.

    Article  CAS  PubMed  Google Scholar 

  58. McIntyre A, Gibson PR, Young GP. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 1993;34:386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lievin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev. 2014;27:167–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Banerjee P, Merkel GJ, Bhunia AK. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog. 2009;1:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell ML, Urdaci MC. Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase Faecalibacterium prausnitzii abundance. Front Immunol. 2017;8:88.

    PubMed  PubMed Central  Google Scholar 

  62. Salminen S, Salminen E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl. 1997;222:45–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mukherjee S, John S. Lactulose. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2019.

    Google Scholar 

  64. Clausen MR, Mortensen PB. Lactulose, disaccharides and colonic flora. Clin Conseq Drugs. 1997;53:930–42.

    CAS  Google Scholar 

  65. Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(Suppl 1):S29–36.

    Article  PubMed  Google Scholar 

  66. Ruszkowski J, Witkowski JM. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe. 2019;59:100–6.

    Article  CAS  PubMed  Google Scholar 

  67. Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS One. 2014;9:e113864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong H, Penders J, Shi Z, Ren H, Cai K, Fang C, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheng M, Ning K. Stereotypes about enterotype: the old and new Ideas. Genom Proteom Bioinform. 2019;17:4–12.

    Article  Google Scholar 

  70. Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. Publisher correction: enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3:388.

    Article  CAS  PubMed  Google Scholar 

  71. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, et al. Rethinking "enterotypes". Cell Host Microbe. 2014;16:433–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–23.

    Article  CAS  PubMed  Google Scholar 

  74. Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, et al. Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: a double-blind, randomized, placebo-controlled trial. EBioMedicine. 2018;38:265–72.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This clinical study was funded by OJSC AVVA RUS, Russia.

Author information

Authors and Affiliations

Authors

Contributions

EN performed 16S sequencing analysis and contributed to the writing of the manuscript. EK characterized the microbial changes, and contributed with drafting the article. DS contributed to experimental design and the writing of the manuscript. AS contributed to experimental design and drafting of the article. IZ contributed to pediatrician, patient screening and monitoring, concept design, and acquisition of data. PV contributed to statistical analysis and drafting of the article. MT contributed to analysis and interpretation of data and writing of manuscript. AA contributed to bioinformatics and statistics, and drafting of the article. CS contributed to writing and coordinating experimental procedures for this work, final approval of the version to be published. He is also the guarantor of this original article and takes the responsibility for the integrity of the work as a whole, from its inception to published article.

Corresponding author

Correspondence to Christos Shammas.

Ethics declarations

Ethical approval

Granted in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1964, as revised in 2000. This study was approved by the institutional bioethics review board committee of the Pediatrics Department of the Russian Medical Academy of Postgraduate Education, Moscow Russia (Bioethics approval number: GBUZ-DGP no. 13З DZM).

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

a Stacked bar chart of median percent counts of operational taxonomic units representing bacterial genera with a frequency of < 1% of total counts in the stool from subjects treated with azithromycin + lactulose and only azithromycin. The X and Y axes represent the collection time points and percentages of bacterial taxa, respectively; b bar chart of eleven most statistically significant changes observed at the genus level (TIF 4873 kb)

Supplementary Fig. 2

Time course plots of the normalized difference in genus abundance for the intervals 0 to 18 days and 0 to 60 days. The curves show the azithromycin group (red) and azithromycin–lactulose group [30]. The plot grid includes only the genera exhibiting statistically significant difference in at least one of the intervals tested in either group (TIF 8784 kb)

Supplementary Fig. 3

a Dotplots showing the normalized difference between the azithromycin (red) and azithromycin-lactulose [30] groups at the genus level. Taxa with non-statistically significant results in at least one of the tests were omitted; b alpha diversities and divergence tested before and after treatment for each group. *P < 0.05, ***P < 0.001 from the Mann Whitney U test (TIF 3376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaou, E., Kamilari, E., Savkov, D. et al. Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose. World J Pediatr 16, 168–176 (2020). https://doi.org/10.1007/s12519-019-00315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-019-00315-6

Keywords

Navigation