Skip to main content
Log in

Molecular pathophysiology of Bartter’s and Gitelman’s syndromes

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

In the last two decades, progress in cytogenetic and genome research has enabled investigators to unravel the underlying molecular mechanisms of inherited tubulopathies such as Bartter’s and Gitelman’s syndromes and helped physicians to better understand not only these two pathologic entities but also renal pathophysiology and salt sensitive hypertension.

Data sources

Articles collected from PubMed and open access journals included original articles, research articles, and comprehensive reviews. They were evaluated by the authors with an special emphasis on originality and up to date information about molecular pathophysiology.

Results

Bartter’s and Gitelman’s syndromes are two different inherited salt loosing tubulopathies. They are characterized by various inability of distal nephron to reabsorb sodium chloride with resultant extarcellular volume contraction and increased activity of the renin angiotensin aldosterone system. Hypokalemic metabolic alkalosis is a common feature of these two forms of tubulopathies. Hypercalciuria characterizes the majority of Bartter’s syndrome, and hypomagnesemia with hypocalciuria characterizes Gitelman’s syndrome. Low blood pressure is a common feature among patients who suffered from these tubulopathies. Bartter’s syndromes encompass a heterogeneous group of ion channels defects localized at the thick ascending limp of Henle’s loop with resultant loss of function of sodium-potassium-2 chloride cotransporter. These defects result in the impairment of the countercurrent multiplication system of the kidney as well as calcium, potassium and acid base disturbances which in the majority of cases are proved lethal especially in the antenatal and/or immediate postnatal life period. The underlying pathology in Gitelman’s syndrome is defined to the distal convoluted tubule and is related to loss of function of the sodium-chloride cotransporter. The results of this defect encompass the inability of extracellular volume homeostasis, magnesium and potassium conservation, and acid base disturbances which are generally mild and in the majority of cases are not life-threatening.

Conclusions

Recent advances in molecular pathophysiology of Bartter’s and Gitelman’s syndromes have helped physicians to better understand the underlying mechanisms of these pathologic entities which remain obscure. Data collected from experiments among genetically manipulated animals enable us to better understand the pathophysiology of mammalian kidney and the underlying mechanisms of salt sensitive hypertension and to lay a foundation for the future development of new drugs, especially diuretics and antihypertensive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartter FC, Pronove P, Gill JR Jr, Maccardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 1962;33:811–828.

    Article  CAS  PubMed  Google Scholar 

  2. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 1966;79:221–235.

    CAS  PubMed  Google Scholar 

  3. Rudin A. Bartter’s syndrome. A review of 28 patients followed for 10 years. Acta Med Scand 1988;224:165–171.

    Article  CAS  PubMed  Google Scholar 

  4. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008;40:592–599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Knoers NV, Levtchenko EN. Gitelman syndrome. Orphanet J Rare Dis 2008;3:22.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stein JH. The pathogenetic spectrum of Bartter’s syndrome. Kidney Int 1985;28:85–93.

    Article  CAS  PubMed  Google Scholar 

  7. Fremont OT, Chan JC. Understanding Bartter syndrome and Gitelman syndrome. World J Pediatr 2012;8:25–30.

    Article  PubMed  Google Scholar 

  8. Kurtz I. Molecular pathogenesis of Bartter’s and Gitelman’s syndromes. Kidney Int 1998;54:1396–1410.

    Article  CAS  PubMed  Google Scholar 

  9. Unwin RJ, Capasso G. Bartter’s and Gitelman’s syndromes: their relationship to the actions of loop and thiazide diuretics. Curr Opin Pharmacol 2006;6:208–213.

    Article  CAS  PubMed  Google Scholar 

  10. Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, et al. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A 1993;90:2749–2753.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, et al. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 1994;269:17713–17722.

    CAS  PubMed  Google Scholar 

  12. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 1996;12:24–30.

    Article  CAS  PubMed  Google Scholar 

  13. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996;13:183–188.

    Article  CAS  PubMed  Google Scholar 

  14. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996;14:152–156.

    Article  CAS  PubMed  Google Scholar 

  15. Dimke H, Hoenderop JG, Bindels RJ. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009;118:1–18.

    Article  Google Scholar 

  16. Nascimento CL, Garcia CL, Schvartsman BG, Vaisbich MH. Treatment of Bartter syndrome. Unsolved issue. J Pediatr (Rio J) 2014;90:512–517.

    Article  Google Scholar 

  17. Blanchard A, Vargas-Poussou R, Vallet M, Caumont-Prim A, Allard J, Desport E, et al. Indomethacin, Amiloride, or Eplerenone for Treating Hypokalemia in Gitelman Syndrome. J Am Soc Nephrol 2014 Jul 10. [Epub ahead of print]

  18. Rose BD. Diuretics. Kidney Int 1991;39:336–352.

    Article  CAS  PubMed  Google Scholar 

  19. Dimke H, Hoenderop JG, Bindels RJ. Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol 2011;589:1535–1542.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 1981;392:92–94.

    Article  CAS  PubMed  Google Scholar 

  21. Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011;301:F1143–F1159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Haisch L, Almeida JR, Abreu da Silva PR, Schlingmann KP, Konrad M. The role of tight junctions in paracellular ion transport in the renal tubule: lessons learned from a rare inherited tubular disorder. Am J Kidney Dis 2011:57:320–330.

    Article  CAS  PubMed  Google Scholar 

  23. Planells-Cases R, Jentsch TJ. Chloride channelopathies. Biochim Biophys Acta 2009;1792:173–189.

    Article  CAS  PubMed  Google Scholar 

  24. Scholl U, Hebeisen S, Janssen AG, Müller-Newen G, Alekov A, Fahlke C. Barttin modulates trafficking and function of ClC-K channels. Proc Natl Acad Sci U S A 2006;103:11411–11416.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, et al. Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 2002;13:836–847.

    PubMed  Google Scholar 

  26. Gamba G. The thiazide-sensitive Na+-Cl cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol 2009;297:F838–F848.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hoenderop JG, Bindels RJ. Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda) 2008;23:32–40.

    Article  CAS  Google Scholar 

  28. Olinger E, Schwaller B, Loffing J, Gailly P, Devuyst O. Parvalbumin: calcium and magnesium buffering in the distal nephron. Nephrol Dial Transplant 2012;27:3988–3994.

    Article  CAS  PubMed  Google Scholar 

  29. Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, et al. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant 2009;24:1455–1464.

    Article  CAS  PubMed  Google Scholar 

  30. Seyberth HW. An improved terminology and classification of Bartter-like syndromes. Nat Clin Pract Nephrol 2008;4:560–567.

    Article  PubMed  Google Scholar 

  31. Amirlak I, Dawson KP. Bartter syndrome: an overview. QJM 2000;93:207–215.

    Article  CAS  PubMed  Google Scholar 

  32. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, et al. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 2000;275:37922–37929.

    Article  CAS  PubMed  Google Scholar 

  33. Puricelli E, Bettinelli A, Borsa N, Sironi F, Mattiello C, Tammaro F, et al. Long-term follow-up of patients with Bartter syndrome type I and II. Nephrol Dial Transplant 2010;25:2976–2981.

    Article  PubMed  Google Scholar 

  34. Jeck N, Schlingmann KP, Reinalter SC, Kömhoff M, Peters M, Waldegger S, et al. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol 2005;288:R782–R795.

    Article  CAS  PubMed  Google Scholar 

  35. Wu RS, Marx SO. The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney Int 2010;78:963–974.

    Article  CAS  PubMed  Google Scholar 

  36. Kurtzman NA. Disorders of distal acidification. Kidney Int 1990;38:720–727.

    Article  CAS  PubMed  Google Scholar 

  37. Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 2004;19:13–25.

    Article  PubMed  Google Scholar 

  38. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 1997;17:171–178.

    Article  CAS  PubMed  Google Scholar 

  39. Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 2000;11:1449–1459.

    CAS  PubMed  Google Scholar 

  40. Krämer BK, Bergler T, Stoelcker B, Waldegger S. Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nat Clin Pract Nephrol 2008;4:38–46.

    Article  PubMed  Google Scholar 

  41. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 2000;48:754–758.

    Article  CAS  PubMed  Google Scholar 

  42. Birkenhäger R, Otto E, Schürmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001;29:310–314.

    Article  PubMed  Google Scholar 

  43. Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, et al. Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 2001;414:558–561.

    Article  PubMed  Google Scholar 

  44. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, et al. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 2004;350:1314–1319.

    Article  CAS  PubMed  Google Scholar 

  45. Nozu K, Inagaki T, Fu XJ, Nozu Y, Kaito H, Kanda K, et al. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet 2008;45:182–186.

    Article  CAS  PubMed  Google Scholar 

  46. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 2010;298:F485–F499.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaître X, Paillard M, et al. Functional characterization of a calciumsensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 2002;13:2259–2266.

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 2002;360:692–694.

    Article  CAS  PubMed  Google Scholar 

  49. Gamba G, Friedman PA. Thick ascending limb: the Na (+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009;458:61–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cha SK, Huang C, Ding Y, Qi X, Huang CL, Miller RT. Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K+ channel Kir4.1. J Biol Chem 2011;286:1828–1835.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kong S, Zhang C, Li W, Wang L, Luan H, Wang WH, et al. Stimulation of Ca2+-sensing receptor inhibits the basolateral 50-pS K channels in the thick ascending limb of rat kidney. Biochim Biophys Acta 2012;182:273–281.

    Article  Google Scholar 

  52. Ponce-Coria J, San-Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D, de Los Heros P, et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A 2008;105:8458–8463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Chrispal A, Boorugu H, Prabhakar AT, Moses V. Amikacininduced type 5 Bartter-like syndrome with severe hypocalcemia. J Postgrad Med 2009;55:208–210.

    Article  CAS  PubMed  Google Scholar 

  54. Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 2011;22:693–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Urbanová M, Reiterová J, Stěkrová J, Lněnička P, Ryšavá R. DNA analysis of renal electrolyte transporter genes among patients suffering from Bartter and Gitelman syndromes: summary of mutation screening. Folia Biol (Praha) 2011;57:65–73.

    Google Scholar 

  56. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB, Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int 2001;59:710–717.

    Article  CAS  PubMed  Google Scholar 

  57. Costanzo LS, Weiner IM. On the hypocalciuric action of chlorothiazide. J Clin Invest 1974;54:628–637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol 2000;279:F616–F625.

    CAS  PubMed  Google Scholar 

  59. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 1999;274:8375–8378.

    Article  CAS  PubMed  Google Scholar 

  60. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 1999;274:22739–22746.

    Article  CAS  PubMed  Google Scholar 

  61. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 2002;31:166–170.

    Article  CAS  PubMed  Google Scholar 

  62. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003;114:191–200.

    Article  CAS  PubMed  Google Scholar 

  63. Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, et al. Altered renal distal tubule structure and renal Na (+) and Ca (2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 2004;15:2276–2288.

    Article  CAS  PubMed  Google Scholar 

  64. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005;115:1651–1658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios Koulouridis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koulouridis, E., Koulouridis, I. Molecular pathophysiology of Bartter’s and Gitelman’s syndromes. World J Pediatr 11, 113–125 (2015). https://doi.org/10.1007/s12519-015-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-015-0016-4

Key words

Navigation