Skip to main content
Log in

Decrease of renal aquaporins 1–4 is associated with renal function impairment in pediatric congenital hydronephrosis

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Renal aquaporins (AQP1-4) concentration is downregulated and is in proportion to the degree of hydronephrosis graded by ultrasound in pediatric congenital hydronephrosis (CH). However, the relationship between the expression of AQP1-4 with the changes of renal function impairment (RFI) evaluated by 99mTc-DTPA renal dynamic imaging is still unclear. This study aimed to investigate the relationship between AQP1-4 expression and degree of RFI in children with CH.

Methods

The expression of AQP1-4 was evaluated in 45 children with unilateral ureteropelvic junction obstruction (28 boys and 17 girls, average age: 28±10 months) and 15 children undergoing nephrectomy for nephroblastoma (8 boys and 7 girls, average age: 26±8 months) by immunoblotting and immunohistochemistry. Renal function was graded into mild and severe RFI by 99mTc-DTPA renal dynamic imaging.

Results

One-way analysis of variance with Bonferonni’s correction showed a significantly reduced protein expression of AQP1–4 in the severe RFI group compared with those in both mild RFI group and controls (AQP1: 0.52±0.09 vs. 0.91±0.06 vs. 1.23±0.033; AQP2: 0.68±0.12 vs. 1.09±0.06 vs. 1.52±0.08; AQP3: 0.59±0.16 vs. 0.94±0.08 vs. 1.31±0.07; AQP4: 0.64±0.06 vs. 1.14±0.07 vs. 1.61±0.07; P<0.001, respectively). In kidneys with severe RFI, there was a reduction in the protein concentration of all four AQP isoforms which was more pronounced compared with those seen in kidneys with mild RFI and in the controls.

Conclusion

AQP1-4 expression is reduced in proportion with the impairment degree of renal function graded by 99mTc-DTPA renal dynamic imaging in human CH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen AM, Li C, Praetorius HA, Nørregaard R, Frische S, Knepper MA, et al. Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction. Am J Physiol Renal Physiol 2006;291:F1021–1032.

    Article  PubMed  CAS  Google Scholar 

  2. Li C, Shi Y, Wang W, Sardeli C, Kwon TH, Thomsen K, et al. alpha-MSH prevents impairment in renal function and dysregulation of AQPs and Na-K-ATPase in rats with bilateral ureteral obstruction. Am J Physiol Renal Physiol 2006;290:F384–396.

    Article  PubMed  CAS  Google Scholar 

  3. Topcu SO, Nørregaard R, Pedersen M, Wang G, Jørgensen TM, Frøkiær J. Regulation of aquaporins and sodium transporter proteins in the solitary kidney in response to partial ureteral obstruction in neonatal rats. Urol Int 2011;87:94–104.

    Article  PubMed  CAS  Google Scholar 

  4. Stødkilde L, Nørregaard R, Fenton RA, Wang G, Knepper MA, Frøkiær J. Bilateral ureteral obstruction induces early downregulation and redistribution of AQP2 and phosphorylated AQP2. Am J Physiol Renal Physiol 2011;301:F226–235.

    Article  PubMed  Google Scholar 

  5. Wen JG, Li ZZ, Zhang H, Wang Y, Wang G, Wang Q, et al. Expression of renal aquaporins is down-regulated in children with congenital hydronephrosis. Scand J Urol Nephrol 2009;43:486–493.

    Article  PubMed  CAS  Google Scholar 

  6. Koff SA, Campbell KD. The nonoperative management of unilateral neonatal hydronephrosis: natural history of poorly functioning kidneys. J Urol 1994;152:593–595.

    PubMed  CAS  Google Scholar 

  7. Oh SJ, Moon DH, Kang W, Park YS, Park T, Kim KS. Supranormal differential renal function is real but may be pathological: assessment by 99mtechnetium mercaptoacetyltriglycine renal scan of congenital unilateral hydronephrosis. J Urol 2001;165:2300–2304.

    Article  PubMed  CAS  Google Scholar 

  8. Braren V, Versage PN, Touya JJ, Brill AB, Goddard J, Rhamy RK. Radioisotopic determination of glomerular filtration rate. J Urol 1979;121:145–147.

    PubMed  CAS  Google Scholar 

  9. Gutte H, Møller ML, Pfeifer AK, Thorup J, Borgwardt L, Borgwardt L, et al. Estimating GFR in children with 99mTc-DTPA renography: a comparison with single-sample 51Cr-EDTA clearance. Clin Physiol Funct Imaging 2010;30:169–174.

    Article  PubMed  CAS  Google Scholar 

  10. Elgazzar AH, Bahar RH, Abu-Zidan FM, Francis IM, Sabha M, Kouris K, et al. Experimental complete ureteric occlusion in sheep: radionuclide renography and histopathologic findings. Eur J Nucl Med 1990;17:230–233.

    Article  PubMed  CAS  Google Scholar 

  11. Verkman AS. Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol 2009;(190):359–381.

    Article  PubMed  CAS  Google Scholar 

  12. Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S. Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 2010;285:40777–40784.

    Article  PubMed  CAS  Google Scholar 

  13. Boone M, Deen PM. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008;456:1005–1024.

    Article  PubMed  CAS  Google Scholar 

  14. Tradtrantip L, Tajima M, Li L, Verkman AS. Aquaporin water channels in transepithelial fluid transport. J Med Invest 2009;56Suppl:179–184.

    Article  PubMed  Google Scholar 

  15. Chou CL, Ma T, Yang B, Knepper MA, Knepper MA, Verkman AS. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol Cell Physiol 1998;274:C549–C554.

    CAS  Google Scholar 

  16. Kim SW, Gresz V, Rojek A, Wang W, Verkman AS, Frøkiaer J, et al. Decreased expression of AQP2 and AQP4 water channels and Na, K-ATPase in kidney collecting duct in AQP3 null mice. Biol Cell 2005;97:765–778.

    Article  PubMed  CAS  Google Scholar 

  17. Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, et al. Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am J Physiol Renal Physiol 2009;297:F1575–1586.

    Article  PubMed  CAS  Google Scholar 

  18. Renjen P, Bellah R, Hellinger JC, Darge K. Pediatric urologic advanced imaging: techniques and applications. Urol Clin North Am 2010;37:307–318.

    Article  PubMed  Google Scholar 

  19. Li C, Wang W, Knepper MA, Nielsen S, Frøkiaer J. Downregulation of renal aquaporins in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol 2003;284:F1066–1069.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZZ., Xing, L., Zhao, ZZ. et al. Decrease of renal aquaporins 1–4 is associated with renal function impairment in pediatric congenital hydronephrosis. World J Pediatr 8, 335–341 (2012). https://doi.org/10.1007/s12519-012-0378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-012-0378-9

Key words

Navigation