Skip to main content
Log in

+276 G/T single nucleotide polymorphism of the adiponectin gene is associated with the susceptibility to biliary atresia

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Biliary atresia (BA) is an intractable neonatal inflammatory and obliterative cholangiopathy, leading to progressive fibrosis and cirrhosis. Adiponectin, an anti-inflammatory adipokine, is known to play a possible role in liver diseases. The objective of our study was to determine the relationship between adiponectin gene polymorphisms and BA susceptibility.

Methods

A total of 106 BA patients and 107 healthy controls were included in this study. Two single nucleotide polymorphisms (SNPs) of the adiponectin gene, +45T/G (rs2241766) and +276G/T (rs1501299), were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis.

Results

Genotype distributions of +45 T/G and +276 G/T SNPs were seen in the Hardy-Weinberg equilibrium for both BA patients and controls. The frequency of the G/G genotype at +276G/T was significantly higher in BA patients than in the controls (P=0.009). Regarding +45T/ G in BA patients, the frequency of the T/T genotype tended to be lower than in the controls, but the difference was not significant. Moreover, the G allele at +276G/T in BA patients was more common than in the controls (P=0.0043). In contrast, the frequency of the T allele at +45T/G was not significantly different between BA patients and the controls. None of the haplotypes studied was found to significantly influence the risk of BA.

Conclusions

+276G/T SNP is strongly associated with BA, particularly with the G allele. We postulate that the +276G/T adiponectin gene polymorphism confers increased susceptibility to BA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet 2009;374:1704–1713.

    Article  PubMed  Google Scholar 

  2. Khalil BA, Perera MT, Mirza DF. Clinical practice: management of biliary atresia. Eur J Pediatr 2010;169:395–402.

    Article  PubMed  Google Scholar 

  3. Luo Y, Zheng S. Current concept about postoperative cholangitis in biliary atresia. World J Pediatr 2008;4:14–19.

    Article  PubMed  Google Scholar 

  4. Shen C, Zheng S, Wang W, Xiao XM. Relationship between prognosis of biliary atresia and infection of cytomegalovirus. World J Pediatr 2008;4:123–126.

    Article  PubMed  Google Scholar 

  5. Arikan C, Berdeli A, Ozgenc F, Tumgor G, Yagci RV, Aydogdu S. Positive association of macrophage migration inhibitory factor gene-173G/C polymorphism with biliary atresia. J Pediatr Gastroenterol Nutr 2006;42:77–82.

    Article  PubMed  CAS  Google Scholar 

  6. Davit-Spraul A, Baussan C, Hermeziu B, Bernard O, Jacquemin E. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr 2008;46:111–112.

    Article  PubMed  CAS  Google Scholar 

  7. Shih HH, Lin TM, Chuang JH, Eng HL, Juo SH, Huang FC, et al. Promoter polymorphism of the CD14 endotoxin receptor gene is associated with biliary atresia and idiopathic neonatal cholestasis. Pediatrics 2005;116:437–441.

    Article  PubMed  Google Scholar 

  8. Huang YH, Huang CC, Chuang JH, Hsieh CS, Lee SY, Chen CL. Upstream stimulatory factor 2 is implicated in the progression of biliary atresia by regulation of hepcidin expression. J Pediatr Surg 2008;43:2016–2023.

    Article  PubMed  Google Scholar 

  9. Lee HC, Chang TY, Yeung CY, Chan WT, Jiang CB, Chen WF, et al. Genetic variation in the vascular endothelial growth factor gene is associated with biliary atresia. J Clin Gastroenterol 2010;44:135–139.

    Article  PubMed  CAS  Google Scholar 

  10. Arikan C, Berdeli A, Kilic M, Tumgor G, Yagci RV, Aydogdu S. Polymorphisms of the ICAM-1 gene are associated with biliary atresia. Dig Dis Sci 2008;53:2000–2004.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Barceló MM, Yeung MY, Miao XP, Tang CS, Cheng G, So MT, et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet 2010;19:2917–2925.

    Article  PubMed  Google Scholar 

  12. Lee HC, Chang TY, Yeung CY, Chan WT, Jiang CB, Chan HW, et al. Association of polymorphisms in the Interleukin-18 gene with susceptibility to biliary atresia. J Pediatr Gastroenterol Nutr 2011;52:607–611.

    Article  PubMed  CAS  Google Scholar 

  13. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26:439–451.

    Article  PubMed  CAS  Google Scholar 

  14. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000;102:1296–1301.

    Article  PubMed  CAS  Google Scholar 

  15. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  16. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473–2476.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma A, Muddana V, Lamb J, Greer J, Papachristou GI, Whitcomb DC. Low serum adiponectin levels are associated with systemic organ failure in acute pancreatitis. Pancrease 2009;38:907–912.

    Article  CAS  Google Scholar 

  18. Shimada M, Kawahara H, Ozaki K, Fukura M, Yano H, Tsuchishima M, et al. Usefulness of a combined evaluation of the serum adiponectin level, HOMA-IR, and serum type IV collagen 7S level to predict the early stage of nonalcoholic steatohepatitis. Am J Gastroenterol 2007;102:1931–1938.

    Article  PubMed  CAS  Google Scholar 

  19. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y, et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003;125:1796–1807.

    Article  PubMed  CAS  Google Scholar 

  20. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002;51:536–540.

    Article  PubMed  CAS  Google Scholar 

  21. Jang Y, Lee JH, Chae JS, Kim OY, Koh SJ, Kim JY, et al. Association of the 276G->T polymorphism of the adiponectin gene with cardiovascular disease risk factors in nondiabetic Koreans. Am J Clin Nutr 2005;82:760–767.

    PubMed  CAS  Google Scholar 

  22. Qi L, Li T, Rimm E. The +276 polymorphism of the APM1 gene, plasma adiponectin concentration, and cardiovascular risk in diabetic men. Diabetes 2005;54:1607–1610.

    Article  PubMed  CAS  Google Scholar 

  23. Nakatani K, Noma K, Nishioka J, Kasai Y, Morioka K, Katsuki A, et al. Adiponectin gene variation associates with the increasing risk of type 2 diabetes in non-diabetic Japanese subjects. Int J Mol Med 2005;15:173–177.

    PubMed  CAS  Google Scholar 

  24. Sokol RJ, Mack C, Narkewicz MR, Karrer FM. Pathogenesis and outcome of biliary atresia: current concepts. J Pediatr Gastroenterol Nutr 2003;37:4–21.

    Article  PubMed  Google Scholar 

  25. Mack CL, Tucker RM, Sokol RJ, Karrer FM, Kotzin BL, Whitington PF, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res 2004;56:79–87.

    Article  PubMed  CAS  Google Scholar 

  26. Bezerra JA, Tiao G, Ryckman FC, Alonso M, Sabla GE, Shneider B, et al. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 2002;360:1653–1659.

    Article  PubMed  Google Scholar 

  27. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005;115:911–919.

    Article  PubMed  CAS  Google Scholar 

  28. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006;6:772–783.

    Article  PubMed  CAS  Google Scholar 

  29. Gable DR, Hurel SJ, Humphries SE. Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. Atherosclerosis 2006;188:231–244.

    Article  PubMed  CAS  Google Scholar 

  30. Qi L, Doria A, Manson JE, Meigs JB, Hunter D, Mantzoros CS, et al. Adiponectin genetic variability, plasma adiponectin, and cardiovascular risk in patients with type 2 diabetes. Diabetes 2006;55:1512–1516.

    Article  PubMed  CAS  Google Scholar 

  31. Kang ES, Park SY, Kim HJ, Ahn CW, Nam M, Cha BS, et al. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabetes Care 2005;28:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  32. Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 2002;11:2607–2614.

    Article  PubMed  CAS  Google Scholar 

  33. Yang WS, Tsou PL, Lee WJ, Tseng DL, Chen CL, Peng CC, et al. Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J Mol Med 2003;81:428–434.

    Article  PubMed  CAS  Google Scholar 

  34. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002;51:536–540.

    Article  PubMed  CAS  Google Scholar 

  35. Tokushige K, Hashimoto E, Noto H, Yatsuji S, Taniai M, Torii N, et al. Influence of adiponectin gene polymorphisms in Japanese patients with non-alcoholic fatty liver disease. J Gastroenterol 2009;44:976–982.

    Article  PubMed  CAS  Google Scholar 

  36. Tacke F, Wüstefeld T, Horn R, Luedde T, Srinivas Rao A, Manns MP, et al. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J Hepatol 2005;42:666–673.

    Article  PubMed  CAS  Google Scholar 

  37. Menzaghi C, Ercolino T, Di Paola R, Berg AH, Warram JH, Scherer PE, et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2002;51:2306–2312.

    Article  PubMed  CAS  Google Scholar 

  38. Ukkola O, Ravussin E, Jacobson P, Sjöström L, Bouchard C. Mutations in the adiponectin gene in lean and obese subjects from the Swedish obese subjects cohort. Metabolism 2003;52:881–884.

    Article  PubMed  CAS  Google Scholar 

  39. Park PH, Thakur V, Pritchard MT, McMullen MR, Nagy LE. Regulation of Kupffer cell activity during chronic ethanol exposure: role of adiponectin. J Gastroenterol Hepatol 2006;21:30–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Poovorawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udomsinprasert, W., Tencomnao, T., Honsawek, S. et al. +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with the susceptibility to biliary atresia. World J Pediatr 8, 328–334 (2012). https://doi.org/10.1007/s12519-012-0377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-012-0377-x

Key words

Navigation