Skip to main content

Advertisement

Log in

Evaluation of vertical accuracy of different digital elevation models sources for Buraydah city

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Digital Elevation Models (DEMs) are used in a variety of applications and in different scientific disciplines. Analysis of the DEM datasets for these applications requires information about the quality of the elevation data. In this paper, the quality of several DEM datasets has been compared with Global Navigation Satellite System (GNSS) ground control points for Buraydah city, Saudi Arabia. The DEM datasets include high resolution DEM data extracted from 1-m contour maps (CON-DEM), the Advanced Land Observing Satellite (ALOS World 3D) 30 m resolution, Shuttle Radar Topography Mapping Mission (SRTM) 30 m resolution and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM) 30 m resolution images. The vertical accuracy assessment measures were calculated assuming the normality and non-normality of the encountered errors after removing outliers from the elevation’s differences. All DEM datasets represent a strong correlation of DEM errors in comparison with the reference data. The CON-DEM has the highest accuracy of 1.446 m root mean square error (RMSE) followed by ALOS AW3D30 datasets of accuracy 1.746 m. In contrast, the SRTM and ASTER GDEM datasets have the lowest accuracies (2.583 m and 5.667 m RMSE respectively). In addition, results of the robust estimates such as the normalized median (NMAD) and the absolute deviation at the 90% quantile (LE90) are produced to refine the results for non-normal error distribution datasets. The calculations show slight differences of the statistical estimates for some DEM datasets that represent non-normality of the elevation difference when compared with the reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© 2020 Digital Globe, © 2020 Google Earth)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar MA, Saldaña M, Aguilar F (2013) Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int J Appl Earth Obs Geoinf 21:427–435. https://doi.org/10.1016/j.jag.2012.06.004

    Article  Google Scholar 

  • Aguilar MA, Saldaña M, Aguilar F (2014) Generation and quality assessment of stereo-extracted DSM from GeoEye-1 and WorldView-2 imagery. IEEE Trans Geosci Remote Sens 52:1259–1271. https://doi.org/10.1109/TGRS.2013.2249521

    Article  Google Scholar 

  • Alganci U, Beşol B, Sertel E (2018) Accuracy assessment of different digital surface models. International Journal of Geo-Information. 7. https://doi.org/10.3390/ijgi7030114

  • Alidoost F, Samadzadegan F (2013) Statistical evaluation of fitting accuracy of global and local digital elevation models in Iran. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-1/W3. 19-24. 10.5194/isprsarchives-XL-1-W3-19-2013

  • Al-Qassim Munsipality website. https://www.qassim.gov.sa/AR/Geodetic/Pages/default.aspx. Accessed 20 June 2018

  • ASTER GDEM Validation Team (2011) ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. Available online: https://www.lpdaac.usgs.gov/. Accessed 9 January 2018

  • Athmania D, Hammadi A (2014) External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sensing 6:4600–4620. https://doi.org/10.3390/rs6054600

    Article  Google Scholar 

  • Avtar R, Yunus AP, Kraines S, Yamamuro M (2015) Evaluation of DEM generation based on Interferometric SAR using TanDEM-X data in Tokyo. Phys Chem Earth 83–84(2015):166–177

    Article  Google Scholar 

  • Balenović I, Gašparović M, Milas AS, Berta A (2018) Seletković A (2018) Accuracy assessment of digital terrain models of lowland pedunculate oak forests derived from airborne laser scanning and photogrammetry. Croat J for Eng 39:1

    Google Scholar 

  • Bannari A, Kadhem G, Hameid N, El-Battay A (2017) Small islands DEMs and topographic attributes analysis a comparative study among SRTM V4 1 ASTER V2 1 high topographic contours map and DGPS. J Earth Sci Eng 7(2017):90–119. https://doi.org/10.17265/2159-581X/2017.02.003

    Article  Google Scholar 

  • Bayburt S, Kurtak AB, Büyüksalih G, Jacobsen K (2017) Geometric accuracy analysis of WORLDDEM in relation to AW3D30, SRTM AND ASTER GDEM2. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

  • Becek K, Koppe K (2016) & Kutoğlu Ş H (2016) Evaluation of vertical accuracy of the WorldDEMTM using the runway method. Remote Sens. 8(11):934. https://doi.org/10.3390/rs8110934

    Article  Google Scholar 

  • Böer J, Gonzalez C, Wecklich C, Bräutigam B, Schulze D, Bachmann M, Zink M (2016) Performance Assessment of the final TanDEM-X DEM. Proc. ‘Living Planet Symposium 2016’, Prague, Czech Republic, 9–13 May 2016 (ESA SP-740, August)

  • Büyüksalih G, Baz I, Alkan M, Jacobsen K (2012) DEM Generation with WORLDVIEW-2 Images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B1, 2012 XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

  • Chaieb A, Rebai N, Bouaziz S (2016) Vertical accuracy assessment of SRTM Ver 4.1 and ASTER GDEM Ver 2 using GPS measurements in Central West of Tunisia. J Geogr Inf Syst 08:57–64. https://doi.org/10.4236/jgis.2016.81006

    Article  Google Scholar 

  • Congalton, RG, Green K (2008) Assessing the accuracy of remotely sensed data: principles and practices. Second Edition (2nd ed.). CRC Press, New York

  • Courty L, Soriano-Monzalvo J, Pedrozo-Acuña A (2019) Evaluation of open-access global digital elevation models (AW3D30, SRTM and ASTER) for flood modelling purposes. J Flood Risk Manage. https://doi.org/10.1111/jfr3.12550

    Article  Google Scholar 

  • Dawod G, Al-Ghamdi K (2017) Reliability of recent global digital elevation models for geomatics applications in Egypt and Saudi Arabia. J Geogr Inf Syst 9:685–698. https://doi.org/10.4236/jgis.2017.96043

    Article  Google Scholar 

  • Deilami K, Hashim M (2011) Very high resolution optical satellites for DEM generation: a review. European Journal of Scientific Research ISSN 1450–216X Vol.49 No.4 (2011), pp. 542–554

  • Digital Globe: WorldView-2_datasheet (2018). https://www.euspaceimaging.com/wp-content/uploads/2018/06/EUSI_WorldView-2.pdf. Accessed 6 July 2019

  • Du X, Guo Q, Fan X, Zhu J, Yan Z, Zhan Q (2015) Vertical accuracy assessment of freely available DEMs over low elevation coastal plains. Int J Digital Earth 9:1–34. https://doi.org/10.1080/17538947.2015.1026853

    Article  Google Scholar 

  • Elkhrachy I (2017) Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models a case study of Najran city Saudi Arabia. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2017.01.007

    Article  Google Scholar 

  • Falorni G, Teles V, Vivoni E, Bras R, Amaratunga K (2005) Analysis and characterization of the vertical accuracy of Digital Elevation Models from the Shuttle Radar Topography Mission. Journal of Geophysical Research. 110. https://doi.org/10.1029/2003JF000113

  • GEOEYE-1 fact sheet (2018). https://www.euspaceimaging.com/wp-content/uploads/2018/06/EUSI_GeoEye-1.pdf [Online; accessed 6 July 2019]

  • Gesch DB (2012) Global digital elevation model development from satellite remote-sensing data. In Advances in Mapping from Remote Sensor Imagery: Techniques and Applications; Yang, X., Li, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 92–109

  • Gesch DB, Oimoen MJ, Danielson JJ, Meyer D (2012) Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XLI-B4, 143–148. http://pubs.er. usgs.gov/publication/70175051

  • Gong K, Fritsch D (2016) A detailed study about digital surface model generation using high resolution satellite stereo imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. III-1. 69-76. 10.5194/isprsannals-III-1-69-2016

  • Gong k, Fritsch D (2018) Point cloud and digital surface model generation from high resolution multiple view stereo satellite imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

  • Grohmann CH (2018) Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens Environ 212:121–133. https://doi.org/10.1016/j.rse.2018.04.043

    Article  Google Scholar 

  • Güner B, Frankford M, Johnson J (2009) A study of the Shapiro-Wilk test for the detection of pulsed sinusoidal radio frequency interference. IEEE Trans Geosci Remote Sens 47(6):1745–1751

    Article  Google Scholar 

  • Haider H, Ghumman A, Al-Salamah I, Ghazaw Y, Abdel-Maguid RH (2019) Sustainability evaluation of rainwater harvesting-based flood risk management strategies: a multilevel decision-making framework for arid environments. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-03848-0

    Article  Google Scholar 

  • Hameid NA, Bannari A, Kadhem G (2016) Absolute surface elevations accuracies assessment of different DEMs using ground truth data over Kingdom of Bahrain. J Remote Sensing&GIS 5:166. https://doi.org/10.4172/2469-4134.1000166

    Article  Google Scholar 

  • Hobi M, Ginzler C (2012) Accuracy assessment of digital surface models based on WorldView-2 and ADS80 Stereo Remote Sensing Data. Sensors (basel, Switzerland) 12:6347–6368. https://doi.org/10.3390/s120506347

    Article  Google Scholar 

  • Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. https://doi.org/10.1016/j.isprsjprs.2009.02.003

  • Hu F, Gao XM, Li GY, Li M. (2016) DEM extraction from WorldView-3 Stereo-Images and accuracy evaluation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 XXIII ISPRS Congress, 12–19 July, Prague, Czech Republic

  • Hu Z, Peng J, Hou Y, Shan J (2017) Evaluation of recently released open global digital elevation models of Hubei. China Remote Sensing 9:262. https://doi.org/10.3390/rs9030262

    Article  Google Scholar 

  • Junior ABB, Pires PSdM (2014) An approach to outlier detection and smoothing applied to a Trajectography radar data. J Aerosp Technol Manag 6(3):237–248. https://doi.org/10.5028/jatm.v6i3.325

    Article  Google Scholar 

  • Khalid N, Md Din AH, Omar K, Abdul Khanan MF, Omar A, Abdul Hamid AI, Pa'suya MF (2016) Open-source digital elevation model (DEMs) evaluation with GPS and LidAR data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4/W1. 299-306. 10.5194/isprs-archives-XLII-4-W1-299-2016

  • Loudi Y, Houetchak L, Nouayou R, Kamguia J, Ngouh AN, Makuate M (2018) Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. International Journal of Digital Earth. 1-25. https://doi.org/10.1080/17538947.2018.1458163

  • Luana S, Hou, X, Wang Y (2015) Assessing the accuracy of SRTM Dem and Aster Gdem datasets for the coastal zone of Shandong Province, Eastern China. Polish Maritime Research. 22. https://doi.org/10.1515/pomr-2015-0026

  • Mirza M, Dawod G, Al­Ghamdi K (2011) Accuracy and relevance of Digital Elevation Models for Geomatics applications­a case study of Makkah Municipality, Saudi Arabia. Int J Geomatics Geosci 1(4):803–812

    Google Scholar 

  • Mitchell G, MacNabb K (2010) High resolution stereo satellite elevation mapping accuracy assessment. ASPRS 2010 Annual Conference, San Diego, California, April 26–30, 2010

  • Moawad M, Aziz A (2018) Assessment of remotely sensed digital elevation models (DEMs) compared with DGPS elevation data and its influence on topographic attributes. Advances in Remote Sensing 07:144–162. https://doi.org/10.4236/ars.2018.72010

    Article  Google Scholar 

  • Mukul M, Srivastava V, Jade S, Mukul M (2017) Uncertainties in the Shuttle Radar Topography Mission (SRTM) heights: insights from the Indian Himalaya and Peninsula. Scientific Reports. 7

  • Odutola CA, Beiping W, Ziggah YO (2013) Assessing vertical accuracy of SRTM Ver. 4.1 and ASTER GDEM Ver. 2 using differential GPS measurements–case study in Ondo State, Nigeria. International Journal of Scientific and Engineering Research. Vol. 4. 1

  • Ouerghi S, ELsheikh RF, Achour H, Bouazi S (2015) Evaluation and validation of recent freely available ASTER GDEM V 2 SRTM V 4 1 and the DEM derived from topographical map over SW Grombalia test area in Northeast of Tunisia. J Geograph Inform Syst 7:266–279. https://doi.org/10.4236/jgis.2015.73021

    Article  Google Scholar 

  • Pakoksung K, Takagi M (2016) Digital elevation models on accuracy validation and bias correction in vertical. Model Earth Syst Environ 2:11. https://doi.org/10.1007/s40808-015-0069-3

    Article  Google Scholar 

  • Poli D, Remondino F, Angiuli E (2014) Agugiaro G (2014) Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for3D information extraction. ISPRS J Photogram Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2014.04.007

    Article  Google Scholar 

  • Purinton B, Bookhagen B (2017) Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau, Earth Surf. Dynam., 5, 211–237, 2017, :10.5194/esurf-5-211-2017

  • R Core Team. R software (2019) https://cran.r-project.org/bin/windows/base/ . [Online; accessed on 6 July 2019].

  • RStudio Desktop software. (2019). https://www.rstudio.com/products/rstudio/download/. Accessed on 6 July 2019

  • Rabah M, El-Hattab A, Abdallahb M (2017) Assessment of the most recent satellite based digital elevation models of Egypt. NRIAG Journal of Astronomy and Geophysics 6 (2017) 326–335. Remote Sens. 2017, 9, 262; :https://doi.org/10.3390/rs9030262

  • Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W (2005) An assessment of the SRTM topographic products; Technical Report JPLD-31639. Pasadena, California: Jet Propulsion Laboratory 2005:143p

    Google Scholar 

  • Rossi C, Gernhardt S (2013) Urban DEM generation, analysis and enhancements using TanDEM-X. ISPRS J Photogramm Remote Sens 85:120–131. https://doi.org/10.1016/j.isprsjprs.2013.08.006

    Article  Google Scholar 

  • Santillan J, Makinano-Santillan M (2016) Vertical accuracy assessment of 30-M resolution ALOS, ASTER, and SRTM Global DEMS over Northeastern Mindanao, Philippines. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B4. 149-156. 10.5194/isprsarchives-XLI-B4-149-2016

  • Satgé F, Bonnet MP, Timouk F, Calmant S, Pillco R, Molina J, Garnier J (2015) Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int J Remote Sens 36(2):465–488

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011a) Characteristics of ASTER GDEM version 2. In: Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, pp. 3657–3660 July

  • Tachikawa T, Kaku M, Iwasaki A, Gesch DB, Oimoen MJ, Zhang Z, Danielson JJ, Krieger T, Curtis B, Haase J, et al. (2011b) ASTER global digital elevation model version 2–summary of validation results. Report to the ASTER GDEM Version 2 Validation Team

  • Tadono T, Nagai H, Ishida H, Oda F, Naito S, Minakawa K, Iwamoto H (2016) Generation of the 30 M-mesh global digital surface model by ALOS PRISM. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B4. 157-162. 10.5194/isprs-archives-XLI-B4-157-2016

  • Tadono T, Takaku J, Tsutsui K, Oda F, Nagai H (2015) Status of “ALOS World 3D (AW3D)” global DSM generation. 3822–3825. https://doi.org/10.1109/IGARSS.2015.7326657

  • Takaku J, Tadono T, Tsutsui K (2014) Generation of high resolution global DSM from ALOS PRISM. ISPRS — Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XL-4, 243–248. http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-4/ 243/2014/

  • Tarongi JM, Camps A (2010) Normality analysis for RFI detection in microwave radiometry. Remote Sens. 2:191–210. https://doi.org/10.3390/rs2010191

    Article  Google Scholar 

  • Thomas J, Prasannakumar V (2015) Vineetha P (2015) Suitability of spaceborne digital elevation models of different scales in topographic analysis: an example from Kerala. India Environ Earth Sci 73:1245–1263. https://doi.org/10.1007/s12665-014-3478-0

    Article  Google Scholar 

  • Wecklich C, Gonzalez C, Rizzoli P (2017) TanDEM-X height performance and data coverage. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1–4. http://elib.dlr.de/112379/.

  • Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X digital elevation model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing Volume 139, May 2018, Pages 171–182

  • Yanalak M, Musaoglu N, Ipbuker C, Sertel E, Kaya S (2012) DEM accuracy of high resolution satellite images. In Computational science and its applications – ICCSA 2012. Lecture Notes in Computer Science (Vol. 7335, 471–480). Berlin: Springer-Verlag. Retrieved from http://link.springer. com/chapter/10.1007%2F978–3–642–31137–6_36#page-1

Download references

Acknowledgements

The author would like to thank USGS for SRTM and ASTER datasets, JAXA for ALOS AW3D30 dataset, Qassim Municipality and Ministry of Municipality and Rural Affairs (MOMRA) for providing GNSS reference data on their website and for providing the contour maps. Finally, acknowledgements are extended to anonymous reviewers for their valuable commenst and suggestions, which helped to improve this manscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadan H. Abdel-Maguid.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Maguid, R.H. Evaluation of vertical accuracy of different digital elevation models sources for Buraydah city. Appl Geomat 13, 913–924 (2021). https://doi.org/10.1007/s12518-021-00398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-021-00398-9

Keywords

Navigation