Skip to main content

Advertisement

Log in

Characterization of groundwater potential zones using analytic hierarchy process and integrated geomatic techniques in Central Middle Atlas (Morocco)

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Analytic hierarchy process (AHP) is an invaluable tool that has been applied by different specialists to upgrade their administration capacity. Managing groundwater resources particularly under arid land faces several limitations and problems such as the implications of various spatial factors, which lead managers to utilize multicriteria decision. In this research, a consistent approach was applied to identify groundwater potential (GWP) areas through the use of AHP, geographic information system (GIS), and (RS) techniques in the Central Middle Atlas, Morocco. First of all, the efficient groundwater potential thematic layers including lithology (Lt), karst (K), height above the nearest drainage (HAND) geomorphology, which is called HG, and lineament density (LD) were derived through spatial databases. Then, the weights assigned to the thematic layers on the basis of expert knowledge were standardized by the AHP’s eigen vector technique. To calculate the groundwater potential index, the weighted linear combination (WLC) method was implemented in a GIS environment. The study found that only 3.88% of the study area had very good groundwater potential and 17.22% had a good potential, in addition to 20.20% with moderate potential, whereas in the most part of the region, 29.89% is within poor groundwater potential, and 18.60% are within very poor groundwater potential and 10.49% with non-potential. The very good GWP areas are located where the land cover majority is forests. The good, moderate, and poor GWP zones are located in areas where the land cover majority is shrublands. The poor and non-potential GWP zones are located in areas where the land cover majority is cropland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad I, Dar MA, Andualem TG, Teka AH (2019) Groundwater development using geographic information system. AG:1–10. https://doi.org/10.1007/s12518-019-00283-6

  • Al Saud M (2010) Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. J Water Resour Prot 2(9):839–847

    Google Scholar 

  • Ayazi MH, Pirasteh S, Arvin AKP, Pradhan B, Nikouravan B, Mansor S (2010) Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geo-informatics techniques. Dis Adv 3(1):51–57

    Google Scholar 

  • Baali, A (1998) Genèse et évolution au Plio-Quaternaire de deux bassins intramontagneux en domaine carbonaté méditerranéen. Les bassins versants des dayets Afourgagh et Agoulmam (Moyen Atlas, Maroc) (Doctoral dissertation, Thèse d’État, Université Sidi Mohamed Ben Abdellah, Fès)

  • Balasubramani K, Gomathi M, Bhaskaran G, Kumaraswamy K (2019) GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: a case study of semi-arid watershed, South India. AG 11(3):289–307

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66(2):537–548

    Google Scholar 

  • Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B (2017) Suitability estimation for urban development using multi-hazard assessment map. Sci Total Environ 575:119–134

    Google Scholar 

  • Boujghad A, Bouabdli A, Baghdad B (2019) Groundwater quality evaluation in the vicinity of the Draa Sfar mine in Marrakesh, Morocco. Euro-Mediterranean Journal for Environmental Integration 4(1):12

    Google Scholar 

  • Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local rainfall recharge rates obtained from the chloride method. J Hydrol 294(4):241–250

    Google Scholar 

  • Colo G (1961) Contribution a l'étude du Jurassique du Moyen Atlas septentrional: Atlas de planches hors texte. Éd. de la Division de la géologie, Direction, Ministère, Royaume du Maroc

  • Copernicus (2019) The Copernicus Global Land Service. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 40(7):93

  • Corgne S, Magagi R, Yergeau M, Sylla D (2010) An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sens Environ 114(9):1863–1875

    Google Scholar 

  • Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 111:79–87

    Google Scholar 

  • Cuartas LA, Tomasella J, Nobre AD, Nobre CA, Hodnett MG, Waterloo MJ, Ferreira M (2012) Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: model evaluation and advances in calibration using the new HAND terrain model. J Hydrol 462:15–27

    Google Scholar 

  • Davoodi Moghaddam D, Rezaei M, Pourghasemi HR, Pourtaghie ZS, Pradhan B (2013) Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed. Iran Arab J Geosci. https://doi.org/10.1007/s12517-013-1161-5

  • Donchyts G, Winsemius H, Schellekens J, Erickson T, Gao H, Savenije H, van de Giesen N (2016) Global 30m height above the nearest drainage. Geophys Res Abstr, 18, EGU2016–17445-3. EGU General Assembly 2016

  • El Baghdadi M, Zantar I, Jouider A, Nadem S, Medah R (2019) Evaluation of hydrogeochemical quality parameters of groundwater under urban activities – case of Beni Mellal city (Morocco). Euro-Mediterranean Journal for Environmental Integration 4(1):6

    Google Scholar 

  • Ettazarini S (2007) Groundwater potentiality index: a strategically conceived tool for water research in fractured aquifers. Environ Geol 52(3):477–487

    Google Scholar 

  • Gharari S, Hrachowitz M, Fenicia F, Savenije HHG (2011) Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrol Earth Syst Sci 15(11):3275–3291. https://doi.org/10.5194/hess-15-3275-2011

  • Hamdani N, Baali A (2019) Fracture network mapping using Landsat 8 OLI data and linkage with the karst system: a case study of the Moroccan Central Middle Atlas. Remote Sensing in Earth Systems Sciences 2(1):1–17

    Google Scholar 

  • Hashim M, Ahmad S, Johari MAM, Pour AB (2013) Automatic lineament extraction in a heavily vegetated region using Landsat enhanced thematic mapper (ETM+) imagery. Adv Space Res 51(5):874–890. https://doi.org/10.1016/j.asr.2012.10.004

    Article  Google Scholar 

  • Ishizaka A, Labib A (2009) Analytic hierarchy process and expert choice: benefits and limitations. Or Insight 22(4):201–220

    Google Scholar 

  • Israil M, Al-Hadithi M, Singhal DC (2006) Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeol J 14(5):753–759

    Google Scholar 

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int J Remote Sens 24(5):993–1008

    Google Scholar 

  • Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18:1713–1728. https://doi.org/10.1007/s10040-010-0631-z

    Article  Google Scholar 

  • Kornejady A, Ownegh M, Rahmati O, Bahremand A (2018) Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto Int 33(11):1155–1185

    Google Scholar 

  • Lee S, Kim YS, Oh HJ (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96(1):91–105

    Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25(5):1359–1386

    Google Scholar 

  • Magesh NS, Chandrasekar N (2011) Evaluation of spatial variations in groundwater quality by WQI and GIS technique: a case study of Virudunagar District, Tamil Nadu. India Arab J Geosci. https://doi.org/10.1007/s12517-011-0496-z

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):189–196

    Google Scholar 

  • Maina MM, Tudunwada Y (2017) Lineament mapping for groundwater exploration in Kano state, Nigeria. Int J Adv Agric Environ Eng 4(1):226–229

    Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. John Wiley & Sons

  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2012) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7(2):711–724

    Google Scholar 

  • Marghany M, Hashim M (2010) Lineament mapping using multispectral remote sensing satellite data. Int J Phys Sci 5(10):1501–1507

    Google Scholar 

  • Martin J (1973) Carte géomorphologique du Moyen Atlas central au 1/100 000, 5 feuilles El Hajeb-Sefrou Ain Leuh-Boulmane- Kerrouchène. Notes et mémoires du service géologique, Maroc no. 258

    Google Scholar 

  • Martin J (1981) Le Moyen Atlas central, étude géomorphologique. Published by Service Géologique du Maroc, Rabat Morocco. Notes et Mémoire n° 258 et 258 bis, p 447

  • Masoud AA, Koike K (2006) Arid land salinization detected by remotely-sensed landcover changes: a case study in the Siwa region, NW Egypt. J Arid Environ 66(1):151–167

    Google Scholar 

  • McGrath H, Bourgon JF, Proulx-Bourque JS, Nastev M, El Ezz AA (2018) A comparison of simplified conceptual models for rapid web-based flood inundation mapping. Nat Hazards:1–16

  • Michard A (1976) Eléments de géologie marocaine. Published by Service Géologique du Maroc, Rabat, Morocco. Notes et Mémoire No. 252, p 408

  • Mihi A, Benarfa N, Arar A (2019) Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing. AG:1–13

  • Mogaji KA, Lim HS, Abdullah K (2014) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab J Geosci. https://doi.org/10.1007/s12517-014-1391-1

  • Mukherjee P, Singh CK, Mukherjee S (2012) Delineation of groundwater potential zones in arid region of India—a remote sensing and GIS approach. Water Resour Manag 26(9):2643–2672

    Google Scholar 

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Google Scholar 

  • Nicod J (1972) Pays et paysages du calcaire. In: Norois, no. 79, Juillet-Septembre 1973. pp. 566568.www.persee.fr/doc/noroi_0029182x_1973_num_79_1_3316_t1_0566_0000_1

  • Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Saleska S (2011) Height above the nearest drainage–a hydrologically relevant new terrain model. J Hydrol 404(1–2):13–29

    Google Scholar 

  • Nobre AD, Cuartas LA, Momo MR, Severo DL, Pinheiro A, Nobre CA (2016) HAND contour: a new proxy predictor of inundation extent. Hydrol Process 30(2):320–333

    Google Scholar 

  • Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172. https://doi.org/10.1016/j.jhydrol.2010.12.027

    Article  Google Scholar 

  • Ozdemir A (2011) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405(1):123–136

    Google Scholar 

  • Panagopoulos GP, Bathrellos GD, Skilodimou HD, Martsouka FA (2012) Mapping urban water demands using multi-criteria analysis and GIS. Water Resour Manag 26(5):1347–1363

    Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88

    Google Scholar 

  • Poi N, Samanta S (2019) GIS, remote sensing and MCE approach for identifying groundwater prospective zones in mountainous region of PNG. Applied Geomatics 11(3):317–330

    Google Scholar 

  • Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Cent Eur J Geosci 1(1):120–129

    Google Scholar 

  • Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8(9):7059–7071

    Google Scholar 

  • Rao NS, Chakradhar GKJ, Srinivas V (2001) Identification of groundwater potential zones using remote sensing techniques in and around Guntur town, Andhra Pradesh, India. Journal of the Indian Society of Remote Sensing 29(1–2):69

    Google Scholar 

  • Rennó CD, Nobre AD, Cuartas LA, Soares JV, Hodnett MG, Tomasella J, Waterloo MJ (2008) HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia. Remote Sens Environ 112(9):3469–3481

    Google Scholar 

  • Saaty T (1980) The Analytic Hierarchy Process: Planning, Priority Setting. Resource Allocation. New York: McGraw-Hill

  • Saadi M (1982) Direction des mines et de la géologie, & Maroc. Service géologique. Carte structurale du Maroc. Service géologique du Maroc

  • Shekhar S, Pandey AC (2014) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int

  • Singh SK, Singh CK, Mukherjee S (2010) Impact of land-use and land-cover change on groundwater quality in the lower Shiwalik hills: a remote sensing and GIS based approach. Central Eur J Geosci 2(2):124–131Central Eur J Geosci 2(2):124–131

    Google Scholar 

  • Skilodimou HD, Bathrellos GD, Chousianitis K, Youssef AM, Pradhan Β (2019) Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ Earth Sci 78(2):47

    Google Scholar 

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:1029–1041. https://doi.org/10.1007/s10040-006-0096-2

    Article  Google Scholar 

  • Srivastava PK, Gupta M, Mukherjee S (2012) Mapping spatial distribution of pollutants in groundwater of a tropical area of India using remote sensing and GIS. AG 4(1):21–32

  • Teixeira J, Chaminé HI, Marques JE, Gomes A, Carvalho JM, Albertí AP, Rocha FT (2008) Integrated approach of hydrogeomorphology and GIS mapping to the evaluation of ground water resources: an example from the hydro-mineral system of Caldas Da Cavaca, NW Portugal. In Global Groundwater Resources and Management. Selected Papers from the 33rd International Geological Congress; Paliwal, BS, Ed (pp. 227–249)

  • Thrailkill J (1977) Relative solubilities of limestone and dolomite. Karst hydrology. AIH Memoirs 12:491–500

    Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology edition. Welly Inte

  • Wind Y, Saaty TL (1980) Marketing applications of the analytic hierarchy process. Manag Sci 26(7):641–658

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Faculty of Sciences Dhar Mahraz for its financial and logistical support. The authors also would like to thank the US Geological Survey (USGS) for providing free of charge the Landsat 8 OLI data and Sebou river basin agency for providing the piezometric level data for the study area. Finally, we also acknowledge with thanks the invaluable suggestion from the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Hamdani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdani, N., Baali, A. Characterization of groundwater potential zones using analytic hierarchy process and integrated geomatic techniques in Central Middle Atlas (Morocco). Appl Geomat 12, 323–335 (2020). https://doi.org/10.1007/s12518-020-00300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-020-00300-z

Keywords

Navigation